
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

http://www.basis.com/v16-2012
http://www.basis.com/advantage-overview

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

http://cirrusprint.com/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

current BBj® grid methods. And so, just
like consumers are always going to be
on the lookout for a faster notebook or
smartphone, we are cognizant to always
be on the lookout for ways to make our
Business BASIC even faster. We are
pleased to say that almost all aspects
of BASIS technology benefit from this
continued introspection. The interpreters,
the database, the utilities, Barista and
BUI all perform better and more quickly
in the latest releases. The background
details on how we achieved these gains
are covered in several of the articles in
this edition.

BASIS is positioned better than ever to
satisfy all of your application development
and deployment needs. From our largest
2,000+ user system down to our smallest
single-user solutions, from a cloud-based
deployment to a desktop deployment,
we are ready to partner with you on your
next development project.

Come to Las Vegas for
TechCon2013 May 13-15
and for training May 16-17
to experience, in person,
all that BASIS has to
offer...

“Develop Once,
 Click-Tap Everywhere!”

See you in Vegas.

Editor in Chief Nico Spence
nspence@basis.com

Editor Susan Darling
sdarling@basis.com

Technical Editors Dr. Kevin King, Nick Decker
kking@basis.com, ndecker@basis.com

Copy Editor Peggy Lewis
plewis@basis.com

Art Director, Graphics Patricia Catlett
pcatlett@basis.com

Electronic Production Amer Child
achild@basis.com

BASIS International Ltd.
5901 Jefferson Street NE
Albuquerque, NM 87109-3432

Phone +1.505.345.5232
US Sales 1.800.423.1394
International +1.505.338.4188
www.basis.com info@basis.com

© 2012 by BASIS International Ltd.

The BASIS International Advantage magazine is
published and distributed by BASIS International Ltd.

BASIS does not endorse any products mentioned in
the BASIS International Advantage other than those
products licensed from BASIS International Ltd.

The trademarks and registered trademarks
owned by BASIS International Ltd. in the
United States and other countries are listed at
www.basis.com/trademarks

All other product and brand names are trademarks
or registered trademarks of their respective companies.

Subscribe at links.basis.com/subscribe

 S

Nico Spence
Chairman & CEO

3

Stock photo credits: www.123rf.com

BASIS and the TLA* and FLA* IT World
 BUI, BYOD, LTE, WORA, RAD, ERP, SFC, BBB, COS, RBE, BCI, GUI...

ix years ago with the release
of custom objects, we placed
Business BASIC on an equal
footing with modern object-

oriented programming languages.
Three years ago, we prototyped our
unique ground-breaking browser user
interface (BUI) capability, placing our
language at the forefront of computing
trends. With the phenomenal adoption
of mobile computing by the workforce
in the form of “Bring Your Own Device”
(BYOD) smartphone, tablet, and ultra
light notebook, coupled with blazingly
fast LTE wireless speeds, there
has never been a greater demand
for “Write Once, Run Anywhere”
applications and, more specifically,
web applications. Our timing couldn’t
have been better. In this issue, we
offer several articles that demonstrate
the reasons for BASIS to be the
technology of choice for your next
web application.

In parallel to these efforts, we
re-examined the reasons for the
broad adoption of Business BASIC
in the early business computing
years and determined that there
was a great need for a new set of
application building blocks to fuel
a fresh round of innovation in the
business computing marketplace. As
a result, four years ago we acquired

AddonSoftware® along with the
forerunner to the Barista® RAD tool,
and began the process of modernizing
the venerable ERP solution. This issue
of The BASIS International Advantage
coincides with the release of the final
module, Shop Floor Control, that
completes the third ERP building block
bundle; Manufacturing. Together with
Accounting and Distribution, plus the
myriad of BASIS-supplied new tools
and utilities, there has never been a
better time to develop or redevelop
a vertical market application with the
BASIS Building Blocks and the added
benefits of BASIS’ unique Commercial
Open Source Partnership Program. This
issue incorporates articles that highlight
several new or newly BUI-ized tools
and utilities. From the Resource Bundle
Editor, the BASIS Custom Installer to
Data Auditing and the new Scheduler
in the Enterprise Manager, there is
something for everyone in this issue.

We recently assisted a customer in
debugging their legacy GUI application
code for a ‘lost’ event and were
astonished to discover that they
executed 53,000 lines of code when
navigating through just two lines of
a grid – a great testament to our
interpreter’s performance while serving
as a strong motivator to the customer to
refactor their application code to employ

* TLA, FLA: Three-Letter Acronyms, Four-Letter Acronyms

http://links.basis.com/tcreg
http://www.basis.com/
http://www.basis.com/trademarks
http://www.basis.com/subscribe
http://www.123rf.com/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2

8

22

33

42

50

71

74

83
26

 links.basis.com/12toc

Language/Interpreter Development ToolsPartnership System AdministrationBuilding Blocks

ASCI Partakes RADically From the Barista Cup By Susan Darling
Gain inspiration from this real-world example of how
ASCI RADically improved their GUI application with
Barista, the BASIS GUI RAD tool. ASCI first introduced
improved navigation through Barista’s MDI interface
with enhanced search, sort, and filter capability; new
report output options, tables/forms creation, and role-

based security with an audit trail – all built-in features of Barista. Next, ASCI extended the
features across all their remaining ASCI modules. Follow their example and RADically
change your GUI application with Barista’s out-of-the-box features and functions. More
than just a RAD tool, Barista’s framework delivers building block components integrated
into the product. links.basis.com/12asci

EMQUE On Cue With BUI Apps That are ‘In’ By Susan Darling
See the widespread results in action of this pioneer’s
introduction of BUI apps to the commercial
construction community. During the past two years,
EMQUE’s apps have risen to the top in several notable
New York City renovations and have received awards
and favorable press, both locally and nationally. Read

how they are ‘wowing’ prospects in the field with new innovations. Consider their strategy,
“to grow their apps and market their name to be in position when markets open up and
spending increases.” Take in their sage advice as you continue or consider beginning
your own BUI journey. links.basis.com/12emque

A Web Service Sprouts Great Benefits at Bluegrass By Susan Darling
Graft a Web Service onto your app and watch the
benefits sprout. A Web Service is still the easiest and
best way to communicate, share data, and invoke
functionality between disparate systems written in
different languages and running on different platforms.
Take a close look at how this BASIS customer sowed

their PRO/5 application on an IBM AIX UNIX system with a Windows-based Web Service
that brought great cost savings and tremendous increase in productivity. Follow their
example and take this first step. links.basis.com/12bluegrass

EMS Prescribes BUI to Reduce Healthcare Expenses By Susan Darling
Consider this cure for easily extending legacy PRO/5
data access to desktop and mobile devices. Learn how
EMS harvested the ‘as is’ business logic from PRO/5
into BBj/GUI to deliver the face of the application
through an Internet web portal, complete with login
security. With minimal training, users can now use a

name or subscriber number to view claim history and verify services to be covered before
rendering them, from any browser-compatible device and without adding any JVMs or
additional third party programs onto their device. links.basis.com/12ems

4

The Anatomy of a Web App Makeover: A Case Study By Nick Decker

Examine how BASIS rewrote a web page that
resulted in a BBj code-based web application that
was several times smaller and much easier to write,
test, and debug than the original solution – the
perfect fit for your next web project. See how
BASIS added new features, addressed latency

concerns, and built-in form validation. Consolidating all of the underlying code for
the download page into BBj greatly simplified testing and the process of optimizing
screen layout. For the user, the new download page is faster, easier to navigate,
and delivers new features such as localization and real-time translations.
links.basis.com/12webapp

Going Fast, Faster, Fastest By Adam Hawthorne
Experience maximized performance in BBj
programs resulting from significant BBj 12
optimizations to the string handling code and
in various verbs and functions with some
Java 7 enhancements to the operation of the
Just-In-Time (JIT) Compiler. BASIS engineers

commit themselves to improving the performance of BBj code so you can
concentrate on just writing your application! links.basis.com/12optimize

Compressing Apps for Zippy Network Performance By Jason Foutz

Cut the bandwidth required for initially launching
a thin client on first install or after an upgrade
by over 60% with the latest release of BBj! The
secret? Pack200 and Gzip. Jetty, the built-in
Web Server that ships with BBj, automatically
compresses jars using Pack200. BBj’s Web Server

also uses Gzip compression to speed up both BUI and static resources served
from the htdocs directory, providing the biggest benefit when serving text files.
links.basis.com/12zipapps

Looks Better, Runs Faster By Nick Decker
Follow these simple suggestions for optimizing
your application’s images to achieve quicker
display times, make the most of limited
bandwidth, while delivering quality output. Learn
about choosing the best tool for the job to ensure
that images render in the highest quality possible.

Fortunately, optimizing images is fairly easy and quick, especially with some of
the advanced compression tools available. You can now accomplish this task
yourself instead of delegating it to a dedicated graphic artist. BUI applications look
great out-of-the-box on the new Retina and pixel-doubled displays without the
need to resort to custom code! links.basis.com/12image

Turn On Data Auditing By Jeff Ash
Activate the new Change Audit Logging that makes
the process of building an audit trail fast and easy
to implement for changes to all BASIS file types.
Audit logging data resides in a BBj ESQL database
so the data is accessible from either the Audit
Log Viewer in the Enterprise Manager, or from

querying the audit database directly using SQL. Configure user access permissions
to the audit database easily and in the same way as on any other BBj database.
Using iReport or BBJasper, administrators can create more robust, limited, and/or
customized reporting for others to view in an external application without the need to
grant them access to the Enterprise Manager. links.basis.com/12auditlog

DBMS

Partnership

Language/InterpreterThis bumper crop of articles spans an all-time high of 100 pages!

Fitting all 33 articles into one issue was as impractical as trying to choose which
10 or 12 articles are the most important to print, as we have done in the past. Each
article has tremendous value and is worth reading, so we expanded the table of
contents to help you pick out those you want to read first. Find all these articles
online plus a few we printed here as samples of what lies ahead! Keeping up with
the ever-changing technology around us, we have made The BASIS International
Advantage more modern, more mobile, and bigger and better than ever. View this
ezine everywhere you go – on your desktop, laptop, tablet, smartphone – or print
your favorite articles to pass along to others!

14 71 8 28 52

http://links.basis.com/12asci
http://links.basis.com/12emque
http://links.basis.com/12bluegrass
http://links.basis.com/12ems
http://links.basis.com/12webapp
http://links.basis.com/12optimize
http://links.basis.com/12zipapps
http://links.basis.com/12image
http://links.basis.com/12auditlog

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2

40

54

86

18

46

58

63

79

82

88

94

52

 links.basis.com/12toc

‘Git’dy Up, Developers By Shaun Haney and Christine Hawkins

Jump out of the starting gate and upgrade your
customized AddonSoftware app with Git, an upgrade
intelligence tool that makes upgrading customized
packages easier than ever before while preserving
all of your custom code. Don’t stay "stuck in time"
without the possibility of an application upgrade. With

Barista and Git, developers can now modify both the user interface as well as other
code, and still realize the benefits of an upgrade. Get Git and Git’dy on up.
links.basis.com/12git

Customizable Mobile Report Viewer By Brian Hipple

Perfectly display interactive reports in a browser on
your smartphone, tablet, and other mobile device with
the all new BBJasperViewer utility, written in pure BBj
code and released in BBj 12. Now you can run BBj
code in BUI as it translates code into the browser-
rendered HTML, JavaScript, and CSS. The updated

user interface includes a new child window that houses the various tool buttons that
manipulate the report. Preview the BBj 13 feature that makes it possible to use and
display JasperReports in applications without using SQL or SPROCs. Realize the
power of BASIS’ BBJasper application building block utility today!
links.basis.com/12reportviewer

BASIS IDE in Java 7th Heaven By Mike Phelps

Jump ahead and update to Java 1.7 before the
Oracle clock runs out. The BASIS IDE now
supports Java 1.7. BASIS has made this IDE
upgrade so you can avoid any last minute crises
due to Java 1.6’s looming end-of-life.
links.basis.com/12ide

Easily Install Your Apps With the BCI By Brian Hipple
Hand off the simpler time-consuming tasks so you
can focus on those more complex. It’s time to work
smarter rather than harder. The installation process
is one you may never have to do manually again.
The BASIS Custom Installer (BCI) makes installation
more simple than ever, with several new custom

options. Now you can configure the BCI to invoke specific commands under specific
conditions, install certain files, and run your choice of BASIS installation wizards in the
manner you choose. Imagine being able to download, install, configure, and run your
app without any user interaction! links.basis.com/12custominstall

BBj Documentation is as Easy as JavaDocs By Ralph Lance
Imagine creating API documentation automatically
and directly from your BBj object-oriented
application code. The new BBjToJavadoc utility, a
Javadoc documentation generator, does just that.
Learn how you can easily embed documentation
comments in your BBj programs to generate your

own documentation in HTML Javadoc format. BBj custom classes can take advantage
of some of the more advanced documentation capabilities for easy navigation via
hyperlinks among your classes. Because the Javadoc engine from the Java JDK toolset
is used in the process, any valid document tag can be embedded in the doc comments.
links.basis.com/12docs

BUI, GUI Everywhere By Shaun Haney
Give your app worldwide equal opportunity access
with distributed BUI apps. BASIS’ replication feature
and geo-aware DNS (Domain Name System)
addresses deliver quick performance anywhere in the
world. Explore how to combine Amazon’s geo-aware
DNS addresses with BBj’s File/Directory/Database

Replication to run your app equally well and transparently from any location on the
globe. Follow along this detailed example to learn about the tools, the architecture,
and how it all works. links.basis.com/12gui

5

Quickly Fix Slow SQL By Jeff Ash
Cut down on the time necessary to analyze your data
tables. The improved Query Analysis interface makes it
easier to locate potential areas for improvement in SQL
query performance by better indexing the tables based
on the user’s query usage of those tables. Find out how
one large database that previously took 11 hours to

analyze in BBj version 11.11 now performs the analysis in 3 hours using BBj version 12.
Dramatic performance improvements are just a click away! links.basis.com/12performance

Built-in SQL Access to BASIS Keyed and CSV Files By Robert Del Prete
Access any BASIS or CSV formatted data file regardless
of the presence of a data dictionary with new built-in
stored procedures. These new stored procedures are
always available and can be called from a connection
to any available BBj database. If there is no database
defined within BBj Services, use the system database to

execute the stored procedure. Leverage this new feature in many ways, such as supplying
new access to data by end users. Being able to filter and sort the data using SQL syntax
also provides additional flexibility for the distribution and presentation of that data.
links.basis.com/12sprocs

BASIS SQL Gets Even Better By Jeff Ash
Expand your SQL functionality with new SQL scripting,
types, verbs, functions and views. Easily execute scripts
inside the Enterprise Manager. The addition of ENUM,
REPLACE, DATEDIFF and Full Featured Views gives BBj
developers several more valuable tools for developing
database applications. With continued input from

BASIS customers offering ideas for improving our products, you can count on more
improvements and new features becoming available to the BASIS toolset.
links.basis.com/12sql

The Magical Reusable Dialog Wizard By Ralph Lance
Be amazed with the new Dialog Wizard, the modern
and powerful alternative to AppBuilder. Generate fully
object-oriented BBj programs from a resource file,
automatically generating the callbacks and the method
stubs while preserving your custom editing of the
resultant BBj code. You can run a second or third pass

of the code generator to leverage any changes you may have made to your resource file.
See just how quick it is to go from a resource file to a running program. Beyond magic.
links.basis.com/12dialogwizard

REST Easy - End Your WSDL Struggles By Jason Foutz
Stay afloat in the alphabet soup of UDDI, WSDL, and
SOAP, and eliminate much of the formality imposed by
a WSDL-style Web Service. Employ the spectrum of
Internet infrastructure with REST-based Web Services.
REST is stateless and leverages HTTP, simplifying the
communication to the server. Choose this powerful tool

for deploying Web Services without the risk of drowning in alphabet soup.
links.basis.com/12rest

Babbling With the New Bundle of Joy By Brian Hipple
Meet BASIS’ new Resource Bundle Editor. Easily
separate displayed string literals from the application
code, whether or not your app babbles many languages.
When separating these string literals from the code,
maintenance is so easy that non-programmers can even
change the text. Better yet, a single update of the string

propagates the change throughout the entire application regardless of how many times it
appears. Welcome this new bundle and add it to your family of tools.
links.basis.com/12bundle

Development Tools

System Administration

http://links.basis.com/12performance
http://links.basis.com/12sprocs
http://links.basis.com/12sql
http://links.basis.com/12dialogwizard
http://links.basis.com/12rest
http://links.basis.com/12bundle
http://links.basis.com/12gui
http://links.basis.com/12docs
http://links.basis.com/12custominstall
http://links.basis.com/12ide
http://links.basis.com/12reportviewer
http://links.basis.com/12git

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2

14

28

34

 76

 links.basis.com/12toc

66

90

6

Platform-Independent Task Scheduler By Jeff Ash and Nick Decker
Put power and flexibility at your fingertips with the
new platform-independent scheduler. Replace your
Windows Task Scheduler or UNIX cron jobs with
BBj Tasks and Task Groups for scheduling tasks
that can now even interact with BBj Services. Walk
through this example and learn how to manage BBj

backups and other business processes at regular intervals. Save time, and save the
hassle of using one or more third party schedulers by using this built-in easy-to-
configure and manage tool. links.basis.com/12scheduler

Are You Prepared for Cloud Failure? By Shaun Haney
Depend with confidence on the cloud for your
business continuity, applying these important
tips and safeguards. Redundant copies of data
over multiple regions will ensure that in most any
outage, your enterprise can continue running,
unscathed. Follow the tried and true example that

BASIS put in place to protect against the potential loss of data and money that would
result from a cloud outage. Learn the vital strategy for quick recovery in the event of
such a an outage. links.basis.com/12cloud

AddonSoftware: Ready, Set, Go Deploy! By Christine Hawkins
Build or supplement your vertical market with this
suite of Accounting, Distribution, and Manufacturing
application building blocks and its newly ported
Shop Floor Control module. This milestone marks
the beginning of a host of modernizations and
improvements now possible with AddonSoftware’s

new foundation in BBj and Barista. Why not let BASIS take care of providing the ERP
building blocks of your vertical market application? Try it today!
links.basis.com/12addon

Barista Caffeinates a CUI App With GUI Sprinkles By Ralph Lance

Integrate fully-functional graphical components
with the least amount of effort using the Barista
Application Framework. Instantly begin benefiting
from the myriad of built-in features that Barista
brings to your application. Follow the example of
how to add a GUI lookup to a simple BBx character-

based application. Discover the many variations – sort, filter, select, output, etc. –
available to sprinkle into the CUI app. Ease into graphical user interfaces with minimal
effort and disruption to existing code by leveraging the out-of-the-box functionality
that Barista provides. links.basis.com/12barista

DocOut Easily Modernizes BBx Report By Ralph Lance
DocOut is a document output subsystem component
of the Barista Application Framework RAD tool. Let
DocOut give you all the output choices for your
reports that you need for a modern app – print
preview, PDF, XLS, CSV, XML, Google Docs, fax,
email, and archiving. Now you can leverage these

choices from new or existing PRO/5, Visual PRO/5, or BBj code without having to use
the entire framework, and with very little programming effort! See how it’s done and try
out the sample code. links.basis.com/12docout

New Ways to Debug in Barista By Ralph Lance
Simplify your troubleshooting efforts in your
Barista and custom callpoint code with many new
debugging features. For example, debug and dot-
step through the code by pressing the [ESCAPE]
key to interrupt the process. Or view the dump to
see the contents of the workspace, and start and

stop tracing. You can even view the namespaces and the contents of the namespace
variables. Using Barista is better than ever, so add it to your toolset and enjoy the easy
and efficient way it can help you be more productive in the support of your customers.
links.basis.com/12debug

Building Blocks

Ph
ot

o
cr

ed
it:

 L
as

 V
eg

as
 N

ew
s

Bu
re

au

Develop Once, Click-Tap Everywhere
BASIS TechCon2013 in Las Vegas, NV

Register today links.basis.com/tcreg

May 13-15 – Conference 	
• New Eclipse IDE 			 • Faster, slimmer, better BBj and BUI
• Enhanced Data Dictionary 	 • Three-Tier Architecture Dos and Don’ts
• Mobile Enterprise Manager	 • Building Blocks - New and Revamped

May 16-17 – Training
• CSS for Web Apps 		 • DBMS Enhancements
• CUI to GUI Best Practices 	 • ERP Building Blocks
• Eclipse IDE 			 • BASIS’ Amazon

http://links.basis.com/12scheduler
http://links.basis.com/12cloud
http://links.basis.com/12addon
http://links.basis.com/12barista
http://links.basis.com/12docout
http://links.basis.com/12debug
http://links.basis.com/tcreg
http://links.basis.com/tcreg

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2

39

48

62

68

92

98

 links.basis.com/12toc 7

BASIS Unveils New Training Format By Amer Child
Check out the new web-based training classes
that incorporate pre-recorded content with live
instructor interaction. Pre-recording the core
instruction ensures students receive consistent
delivery of all the important points needed to
understand the key concepts for each class.

Find out why the feedback on our first few training courses in this new style was
positive with both students and trainers. Try out this win-win approach.
links.basis.com/12training

BASIS Survived Amazon Outage By Dr. Kevin W. King

Keep your website and other cloud applications
running 100% with little to no risk of a calamity
bringing your business to a screeching halt. As
BASIS has gone before you to build in safeguards
to avoid such a catastrophe, read how they
avoided the infamous Amazon outage that took

out so many larger and seemingly less wise companies. Follow the leader is more
than a child’s game, it can be a very valuable business model. Learn from BASIS so
you can benefit from all the power and convenience and cost savings of the cloud
while removing the risk along the way. links.basis.com/12survived

An Insider Look at BASIS Testing By Aaron Wantuck
Feel confident in the extensive tests that BASIS
runs before releasing a product. Inquiring
minds can now be satisfied with the details
of the test suite in place that rigorously runs
through each build. Discover the two parts
of the suite – Junit and testbed – and better

understand the roles they play. Thorough testing ensures that we can accomplish
our goals while continuing to meet yours. links.basis.com/12testing

Continuous Innovation at BASIS By Mike Phelps
Look behind the scenes at what makes BASIS a
stronger, more successful company...something
that indirectly benefits everyone who uses BASIS
technology. Once considered science fiction a few
years ago, their new build system is completely
offsite “in the cloud.” Along with the build

process, testing and delivery is 100% cloud-based and is fast, easy to operate,
almost infinitely scalable, and (we believe) disaster-proof.
links.basis.com/12innovation

Java Breaks Deliver By Paul Yeomans
Discover how the bimonthly Java Break sessions
solved a key information delivery challenge;
to reach the BASIS community with relevant
information more current and frequent than
a bi-annual TechCon and at a global location.
Java Breaks to the rescue!

links.basis.com/12javabreak

What’s Needed to Run BBj? By Bruce Gardner

Ask anyone and the answer is a resounding “well,
it depends.” With so many possible variables in
a BBj application deployment, mostly because of
the variability of the application itself, it really is
impossible to provide a specific answer. After all,
one size does not fit all. However, all of the tools

necessary to assess the requirements for your deployment are at your fingertips.
Examine these tools for a full understanding of the dynamic factors involved in all
applications and their deployments, and determine those requirements yourself.
links.basis.com/12trz

Columns

BBjCloud – A BASIS Authorized Distributor

http://www.bbjcloud.com/
http://links.basis.com/12training
http://links.basis.com/12survived
http://links.basis.com/12testing
http://links.basis.com/12innovation
http://links.basis.com/12javabreak
http://links.basis.com/12trz

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Making that many round trips to the client can be really
time-consuming, especially as network latency increases.
Our initial round of testing revealed what we had expected;
validating the contents of controls on the user’s browser
was very time consuming.

If only there was some way to avoid asking the client 17
times for information regarding the status and contents
of the controls on the form. Wouldn’t it be nice if the
interpreter could magically harvest all of the information
at once?

he BASIS Product Suite Download page, written years ago
with a mixture of Perl, HTML, JavaScript, and SQL, was
in great need of a makeover to address a growing list of
enhancement requests from our community. As a testament

to the complexity of this download page, its Perl code alone relied on
a long list of external libraries to integrate critical functions such as
CGI, database, email, FTP, SOAP, date/time manipulation, SSL and
cryptography, and MIME encoding integration. With code that spread
out over multiple files and various languages, this page became
increasingly difficult to maintain and add the user-desired features.
The time had come to rewrite it in a simpler, consolidated, and more
easily maintainable language that was capable of doing everything
the previous system could do and more to accommodate the
upcoming improvements. Our tool of choice – BBj®, of course! With
BBj’s built-in BUI functionality, it was an easy decision.

New Features
The new BUI (browser user interface) download page delivers a
nice list of new features available in its first release:

8

 T

• Localization for five different languages
• Locale auto-detection with the option to select a language
 at any time for real-time translation (see Figure 1)
• Build timestamp display
• Reduced amount of required contact information
• Dynamic build retrieval from an Amazon S3 bucket

By Nick Decker
Engineering
Supervisor

The Latency Test
Concerned about performance of the download page
under high latency conditions, we launched a copy of
our BBj production server’s Amazon EC2 instance in
Ireland. Surely, a distance of about 4,700 miles ought to
be significant enough to introduce some network delays
from the BBj interpreter in Ireland to our browsers in
Albuquerque! The average ping time from Albuquerque to
the West Coast production server was about 45ms, while
the ping time to Ireland was more than five times that
amount – an average of 245ms!

Latency can have a dramatic impact on any program where
the client and server must pass information back and forth.
In the case of the product download page, BBj was running
in the BUI paradigm, but the same would hold true for a
thin client deployment of the code. Even though the new
download page has fewer fields to complete compared to
the old page, the program running on the server still needs
access to the information in all of those fields. In order to
ensure that the user fills in the required fields appropriately
(Figure 2), and to make use of the information later in the
process to check export compliance, the BBj program needs
to retrieve the contents of the 17 form elements from the
client’s browser.

Figure 2. An example of one of the 17 required fields on the form

Figure 1. An example of the locale auto-detection

Language/Interpreter

The Anatomy of a Web App MakeoverThe Anatomy of a Web App Makeover

http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Amazon_S3
http://en.wikipedia.org/wiki/Amazon_ec2

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Why BBj BUI Made Life Easier
Consolidating all of the underlying code for the download
page into BBj greatly simplified things. Some of the more
difficult aspects of the old download page, such as the export
compliance check, were much easier to implement in BBj and
required far less code. The old page built a SOAP message
from the ground up, creating headers, adding data to the
message body, and using specially coded routines to handle
more complex data types. In contrast, the new BBj version
of the download page utilizes a Web Service to accomplish
the same task. The code is simple and straightforward; add a
couple of jars to your classpath in Enterprise Manager (EM),
instantiate the Web Service client, put some properties in a
HashMap, and execute the runTransaction() method. The
BBj code (Figure 4) is succinct and provides a high level of
readability and maintainability.

available in both SYSGUI and BUI, so they will improve the
speed of many of your existing GUI applications. Figure 3
shows form validation in action.

Enter an Old Friend - Form Validation
It turns out that BBj has had a related paradigm already in
place for a traditional thin client deployment – BBjFormValidation
(see Input Validation - Veto Power at links.basis.com/05validation).
The concept of form validation has been around for as long as
the Internet itself. Because it becomes expensive to repeatedly
ask the client for information regarding the contents of controls
in response to user changes, web pages wait until the user
completes entering all the changes before validating the
fields. Once the user presses the [Submit] button, the program
proceeds to validate all of the fields on the form. Beginning
in version 12, BBj adds the same form validation that was
previously available in the thin client to the BUI paradigm.

Adding form validation is the first of two improvements that we
implemented to solve the download page’s latency problem.
While form validation allows the programmer to lock the form
preventing the user from making any further changes until the
validation has completed, it does not do anything to reduce
the number of round trip communications between the server
and the client. We addressed this second part of the problem
with a dramatic improvement to the BBjFormValidation event
itself; it now carries a payload of information with the state
and contents of the controls on the form. This means that
the programmer’s validation routine no longer has to ask the
client for the text in a BBjEditBox, or whether a BBjCheckBox
was selected or not. Instead of asking the client, which causes
network delays, the program simply retrieves the desired
information from the form validation event itself on the server.

Retrieving information from the Form Validation Event was so
useful and revolutionary, that BASIS made similar changes to
many other events unrelated to form validation. For example,
we augmented all of the BBjList events with information about
the control’s state. Previously, the BBj program registered for
the BBjListSelectEvent so that it could react to any changes
in the selection of a BBjList control. When the user selected
an item in the list, this action notified the program and would
then execute the callback routine or method associated
with that event. In most cases, however, the program would
immediately turn around and ask the control for the item in
the list that the user selected. After all, if the program cared
that the user selected an item in the list, chances are pretty
good that it also cared which item in the list the user selected.
Therefore, whenever the user selected an item in the list, the
event would result in another round trip question/answer from
the server to the client in order to find out the new selection in
the list control.

To eliminate that round trip, BBj 12 augments the BBjList
events with three new events:

 1. getSelectedIndex() - returns the currently selected item
 in the list
 2. getSelectedIndices() - returns a vector of all currently
 selected items in the list
 3. getSelectedItem() - returns the text of the currently
 selected item in the list

These new events allow the BBj program to respond to
a selection event in the list control and have all of the
information it will need ahead of time from the event itself.
BASIS also added these same improvements to other events,
such as BBjLostFocusEvent and BBjEditModifyEvent. It is
worth mentioning once more that these new methods are

9

Figure 3. Form validation makes it easy to ensure that
the user provides required information

Language/Interpreter

Figure 4. Excerpt of the export compliance BBj code

Several other routines were also significantly easier in BBj
compared to the previous version including validation, user
notification LightBox, and cookie management. One of the best
simplifications to the new program was to access BASIS data
files and databases natively. The old version, which relied on
Perl for the backend CGI language, used the DBI (database
independent interface) library for database access. This
required the DBD::JDBC module that works in conjunction with
a server written in Java to provide a DBI front end to a JDBC
driver, acting as a bridge between Perl and a BASIS JDBC
database. The end result is that we were able to eliminate
more libraries, remove the dependency on required run-time
processes, improve compatibility, and speed up data access in
the process.

Having all of the code in a single language and in a single
program not only simplifies the process, but makes the coding/
debugging/maintaining much easier as well. The old version
retrieved values from the browser via JavaScript, validated

http://documentation.basis.com/BASISHelp/WebHelp/events/form_validation_event.htm
http://en.wikipedia.org/wiki/Lightbox_(JavaScript)
http://search.cpan.org/~vizdom/DBD-JDBC-0.71/JDBC.pod
http://search.cpan.org/~timb/DBI-1.618/DBI.pm
http://search.cpan.org/~timb/DBI-1.618/DBI.pm
http://links.basis.com/05validation

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Testing was Easier Too!
Because we developed the new download page inside the BASIS
IDE, testing this page was also very easy. Simply tapping the [F5]
key or clicking the [BB Execute] button instantly launched the
program in thin client mode. Adding a BUI definition for the app in
EM only took a minute, so testing it in BUI mode in a browser was
also straightforward. EM provides a link to the BUI app so sending
off a quick email to the BASIS QA department with the link greatly
facilitated testing efforts. Because a BBj installation includes a
fully-configured Web Server that is available when starting BBj
Services, the QA department could also check out the BBj program
and resource for the download page from our SVN source code
repository and then host and test the new page locally.

By contrast, testing the old download page was extraordinarily
difficult. We could only run the old page on a system pre-
configured with Apache Web Server, Perl interpreter, dozens of
external libraries and modules built from source code, runtime
Perl/JDBC bridge server, and more. Because setting up and
maintaining this server was so extensive and time consuming, it
was just impractical and extremely expensive to have more than
one development machine.

Comparing the Old and New Download Pages
One goal of BUI-izing the product download page was to reduce
the size and complexity of the form. Comparing the old and the
new pages side-by-side in Figure 6 shows our success; the new

them; sent them back to the Perl CGI program on the server,
which manipulated them in order to pass them on to the
export compliance services in a SOAP message, then inserted
them into a database. Not only do different languages like
JavaScript, Perl, and SQL each have a vastly different syntax,
but they also have different data types that can complicate
the passing of variables from a program in one language to
another program in a different language. Even comparing
data in JavaScript and Perl is very different; JavaScript uses
the != operator to test for inequality, while Perl only uses !=
when comparing numbers
and instead uses the ne
comparison operator when
the value is a string. Having
all of the code and data in a
single language reduces the
demands and requirements
for the programmer and
eliminates the need to keep
track of all of the special
rules for various languages
as illustrated in Figure 5. The
end result is a program that
is much more robust, less
prone to breakage, and far
easier to debug.

10

Language/Interpreter

Figure 6. Comparing the old (left) and new (right) download page

Figure 5. Consolidating everything 	
into a single language - BBj

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

page is smaller, more compact, and eliminates unnecessary data such as “Fax Number” and unwieldy supporting controls like
the “US/Canada” and “Other” radio buttons and the various “If Other” text boxes. BUI’s integration of Cascading Style Sheets
also assists with making the form more visually attractive while extending the BASIS website theme, including the same fonts,
colors, and gradients, where appropriate.

New Features
One new feature of the BASIS Product Suite Download page is localization into five different languages. While the BUI
program uses the BBTranslator Utility to translate the controls in real time, BASIS used the new BASIS Resource Bundle
Editor (links.basis.com/rbe) to create and maintain all of the text in specialized resource bundles. When the program starts,
it first checks to see if the URL specifies a locale for the BUI application. If there is no locale in the URL, the program checks
for a past locale setting that it saved in a cookie. If that is not available either, then the program retrieves the locale from the
client’s machine.

Once the program has a valid locale setting, it calls a method to translate all of the controls. If the locale is not one of the
five supported languages, then it uses the default language, kept
in sync with English by the BASIS Resource Bundle Editor. The
user may also change the language at any time by selecting a
pre-populated option from the BBjListButton. The callback routine
for this list selection event retrieves the selected locale from the
BBjListSelectEvent to avoid a trip to the client, then calls the
method to translate the controls using the new locale. Figure 7
shows a portion of the page translated into Italian.

11

Language/Interpreter

Figure 7. The download page translated into Italian

BUI and GUI Mortgage Demo Optimizations
To illustrate how you might modify your GUI or BUI application to take advantage of the new form-validation’s payload, consider
how we applied the changes to the BUI
Mortgage demo. The original version of the
code calculated the payment information
when the user pressed the [Calculate]
button. The shift to form validation does
not change much in this part of the
code, just the event type for which the
button is registered. Instead of reacting
to the ON_BUTTON_PUSH event, we
now trigger form validation from the
button by registering for the ON_FORM_
VALIDATION event as shown in Figure 8.

The next change took place in the subroutine that executes when the user presses the [Calculate] button. To start with, we
retrieved the Form Validation Event into an object, highlighted in green in Figure 9. Because the event object contains all of
the information about all of the controls on the form, the next few changes deal with getting the contents of the various controls.
This is the most important part of the change
since it is where we eliminate all of the latency
overhead of making round trips asking the client
for information. This change is pretty simple, too.
Instead of getting the value of the myPrincipal!
InputN control directly, we modified the code
shown in Figure 9 to get the value from the form
validation event by referencing the Principal!
InputN control.

That sort of change continues on for the remainder of the input controls. Once the routine has processed all of the input values,
it updates the screen with the results. One
last change is necessary, as form validation
requires the program to accept or deny the
validation event. This is due to form validation
locking the top-level window from user
changes while the program processes the
form. In order for BBj to unlock the window
and allow additional changes to the form, the
program must call the accept() method as shown in Figure 10.

After making the changes in the program from querying the controls directly to using form validation, we ran comparison tests to

Figure 8. Changing the calculation button’s callback to trigger a Form Validation Event

Figure 9. Retrieving a field value from the validation event

Figure 10. Calling the accept() method to complete form validation

http://links.basis.com/rbe

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

to the cloud via applications like Dropbox. This
capability allows you to download BBj from any
Internet-connected device with a browser and save
it to a single location in the cloud for subsequent
access by numerous machines.

Mission Complete -
Optimizations in Place!
Rewriting the BBj Download page was a smashing
success by any measurement. The resultant
new BBj code base was several times smaller,
easier to write, test, and debug than the old multi-
language code base. We eliminated several other
languages, libraries, runtime servers, machine
dependencies, and setup and configuration
complexities. The new download page is faster,
easier to navigate and use, and includes new
features such as localization and real-time
translations. Best of all, we accomplished all of
this with our own toolset, proving that that BASIS’
BUI technology is a perfect fit for your next web
development project.

• Read the BASIS Advantage article Input Validation - Veto Power at links.basis.com/05validation

• Learn more about the BBj methods and events mentioned in this article in the online documentation at
 links.basis.com/basishelp

• Optimizations do not end here - read more in this issue
 • Looks Better, Runs Faster at links.basis.com/12image
 • GUI, BUI Everywhere at links.basis.com/12gui

• The BUI Mortagage source code is installed with BBj as part of the demos package

Figure 11. Comparing the desktop and mobile versions of the download page

Language/Interpreter

12

a remote server to see the effect. Modifying the program to use form validation
turned out to be a winner, making the program more than 11 times faster when
retrieving the contents of the controls. That speed improvement resulted from a
test using a fairly low-latency connection with a server that was approximately
1,000 miles away with an average of 45ms ping times. In higher latency
scenarios, the speed improvement was even more significant.

Optimizing Layout - Screen Detection for Mobile Browsers
Initially, we embedded the new download page in an IFrame on the BASIS
website, which we built with a Drupal-based CMS system. The main page,
shown inside a desktop browser in Figure 11, contains the menuing system
as well as the left and right navigation bars. In order to maximize the space
available for the BUI application when running on a mobile device, we took
advantage of pre-written code available from detectmobilebrowsers.com. It
offers code in more than 15 languages to detect if the web page is being loaded
into a mobile browser or not. We inserted the PHP code into our Drupal page
and redirected the client to the BUI-only version of the app if viewing the page
in a mobile browser. This maximizes the amount of space for the application on
smaller devices such as tablets and smartphones.

Although it may seem odd at first to download BBj to a phone or tablet, many
mobile devices and operating systems offer the ability to save downloaded files

http://detectmobilebrowsers.com/
http://links.basis.com/12gui
http://links.basis.com/12image
http://links.basis.com/basishelp
http://links.basis.com/05validation

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

AddonSoftware® Cloud Services – Addon Cloud – is a new and simpler way of
deploying and upgrading your enterprise resource planning (ERP) software

ERP simpler than ever before!

Significant cost savings – Everything you need is included in the monthly fee

Performance and reliability – Infinitely scalable, 99.95% up time

Our experience, your benefit – Our experience with Amazon Web Services
frees you to focus on your application development

Configuration and customization freedom – There are no restrictions to
continuing your customization and solution development in the cloud

Advantages of the cloud –
	 • No costly hardware or complex version controls necessary
	 • No large capital outlay
	 • Quicker installations
	 • No under- or over-used servers
	 • Seamless rollout of new features and functions (optional)
	 • 99.95% up time
	 • Elastic load balancing allows your application to automatically
 	 scale up or down based upon need

			 	 Cloud Services On Premise Client/Server

 Pricing Model			

 Hardware			

 OS Licenses			

 Software Licenses	

 Installation			

 Annual Maintenance		

 Security, Patches,			
 Backup Systems

Monthly subscription	 License purchase or rental

 Included		 Must purchase, maintain, and upgrade

 Included			 Must purchase

 Included			 Must purchase

 No installation	 	 Lengthy installation process

 Included		 17% of AddonSoftware cost

 Included			 Customer responsibility

http://www.addonsoftware.com/
http://www.addonsoftware.com/cloud-services

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc14

Building Blocks

ound the trumpets! The
AddonSoftware® Shop Floor
Control module is now fully
ported to the Barista® Application

Framework from its legacy versions
6 and 7. This milestone marks the
beginning of a host of modernizations
and improvements now possible with
AddonSoftware’s new foundation in BBj®
and Barista.

AddonSoftware by Barista offers largely
the same features and functionality to
the user as did the legacy versions,
albeit with a much more modern look
and feel and all the Barista-supplied
benefits. This wasn't a pure port,
however. The AddonSoftware team
made several improvements under the
hood to leverage Barista, the BBj SQL
engine, etc. Improvements included
unpacking all date fields, normalizing
all database tables, and restructuring
program code to eliminate line numbers,
and make use of symbolic labels and
structured syntax, etc.

In this article, we'll discuss the basics of
the Shop Floor module and review the

 S
AddonSoftware: Ready, Set, Go Deploy!

By Chris Hawkins
Software Developer

Figure 1. Release Work Order function incorporates a grid highlightng any component shortages

other completed and available modules offered by AddonSoftware. For a quick look,
see Shop Floor Control at a Glance and AddonSoftware Modules at a Glance on the
next two pages.

Shop Floor Control
Shop Floor uses work orders to collect, store, track, and report the costs of
material, labor, overhead, and outside purchases that relate to the manufacture of
an item or batch of items. The module is fully integrated; users enter information
only once and it flows into other application modules automatically, including Bill of
Materials, Inventory Control, Purchase Order Processing, Sales Order Processing,
and General Ledger. Shop Floor Control also maintains work order history for each
manufactured part number, and each work order’s history is available by transaction
for as long as desired.

Barista Serves a More Intuitive Interface
The core functionality of the Shop Floor Control module is the same as the legacy
version, so users of character-based AddonSoftware will feel at home. But, with a BBj
and Barista foundation, the AddonSoftware user interface is much more intuitive and
takes advantage of graphical capabilities not available in the past.

The Release Work Order window contains a built-in grid showing required and
available quantities. Automatic highlighting of any component shortages facilitates
quick and easy analysis (see Figure 1).

http://links.basis.com/sfaag
http://links.basis.com/aonaag

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 15

Building Blocks

• Work Order Entry
 • Shop Floor makes use of three work order categories:
 o Inventory Work Orders are for stocked, manufactured 	 	
 items. Inventory work orders explode/expand/launch
 automatically from bills when using the Bill of Materials 	
 module.
 o Non-Inventory Work Orders are for the manufacture of
 an item, job, or customer’s order not normally stocked.
 Use a standard bill of material for a similar item as a 	 	
 starting point and modify as needed before issuing the
 work order.
 o Recurring Work Orders are for maintenance, repair, or 		
 capital project activities.
 • Easily enter and track planned and quoted work orders 	 	
 without committing materials.
 o The Release Work Order process changes work orders
 from planned or quoted to open status and displays
 component shortages for review before committing
 materials. Once opened, the components required are
 committed and not available for other issues or sales.
 The release process also records the work order
 finished goods items as on order. Voilà, the inventory is
 always under control!
 o Schedule open work orders either forward from the
 scheduled start date or backwards from the scheduled
 completion date.
 o Additional options from within Work Order Entry allow
 viewing and editing (if applicable) materials, operations,
 and subcontracts, printing a Detail Report, Transaction
 History, Cost Summary, and Job Status reports, assigning
 Lot/Serial numbers, or making a Copy of a non-stock
 work order.

• Printing Work Orders
 • The Traveler is a complete list of required materials, labor
 steps, subcontract requirements, and comments.
 • The Pick List prints by Operations for more efficient staging
 of materials.

• Committing Material
 • Materials are committed automatically when work orders are
 released, but the Materials Commitment Entry process
 facilitates commitment in situations where item substitutions
 are made, immediate production quantity differs from
 scheduled quantity, etc.

• Inquiry Processes
 • Dispatch Inquiry enables viewing of work orders for a given
 operation, user-specified date range, and priority. It also
 shows planned or quoted work orders to review their 	 	
 potential impact on the work center schedule.
 • Load Balance Inquiry displays a filtered, graphical view of
 an operation’s scheduled labor compared to available hours.

• Transaction Processing
 • Create Purchase Requisitions generates requisitions for
 subcontracted services. The work order indicates whether
 someone has requisitioned, ordered, or received those items.
 • Materials Issues Entry issues from inventory items picked
 for their respective work orders.
 • Time Sheet Entry allows the entry of labor hours
 accumulated against an open work order and entry of
 the number of production items completed at that
 operation; parameterized to allow entry from daily time
 sheets (by employee), weekly time sheets (by date), or
 work order travelers (by work order).
 • Cost Adjustment Entry allows for recall and adjustment of
 open work order operation and subcontract transactions.
 • Work Order Close Data Entry closes work orders; either closed
 complete, meaning that no additional units will be
 produced, or partial, meaning that a portion of the units
 will be completed later.

• Reporting
 • Work Order Header Report prints all or selected work order
 header information. When run for all open work orders, it
 totals all transactions for a work in process register.
 • Shop Floor Dispatch Report lists all work orders with
 outstanding production requirements by scheduling priority.
 Use it to identify which jobs are to be worked on for each
 work center.
 • The Production Exception Report highlights what production
 is causing work orders to become overdue; determine if
 delays are due to labor, purchase orders, or to both.
 • Bottleneck Analysis Report allows entry of a percent of
 utilization to report any operation scheduled over that
 utilization. Use it to identify which scheduled jobs are
 creating a bottleneck.
 • Labor Efficiency Analysis Report reviews performance of
 each operation in comparison to the standards defined.
 Use closed work orders to get an historical perspective,
 open work orders to analyze the current situation, or both.
 • Cost Variance Analysis Report analyzes the difference
 between standard and actual costs in operations, materials,
 and subcontracts. It is useful for adjusting standard labor
 hours, tracking the performance of shop labor and
 production management, and analyzing the sources of labor
 variances.
 • Date Analysis Report analyzes work orders for estimated
 start or completion dates, actual start dates, or last active
 date.
 • Committed Materials Report prints a list of material
 committed to a work order but not issued. The report
 compares committed balances for each item code to
 on-hand, total committed, available, and on-order quantities.

Shop Floor at a Glance

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

 • Inventory Control - Online updating of inventory
 balances gives access to current details about
 availability, future demand, and expected receipts.
 Full, perpetual tracking of finished goods, raw
 materials, and components. Safety stock, EOQ, and
 order point are automatically calculated for each
 inventory item. Full lot or serial number tracking
 maintains complete history. Integrates with Accounts
 Payable, Accounts Receivable, General Ledger,
 Sales Order Processing, Purchase Order Processing,
 Sales Analysis, Bill of Materials, and Shop Floor.

 • Sales Analysis - Gain fast, accurate sales information
 for up to two years with this module. Analyze sales,
 cost of goods sold, and gross profit for customers,
 products, vendors, salespeople, and territories. View
 monthly sales information or a complete sales history
 for any customer or product. Rolling 12-month sales
 reports for customers and products are also available.
 Intgegrates with Acccounts Payable, Accounts
 Receivable, Sales Order Processing, Inventory

Manufacturing
 • Bill of Materials - Designed for companies that
 assemble finished goods and manufacture most of the
 components. Provides unlimited levels of material
 usage and can easily develop material costs, direct
 costs, and overhead labor costs. Integrates with
 Accounts Payable, Accounts Receivable, General
 Ledger, Sales Order Processing, and Shop Floor.

 • Shop Floor Control - Automatically schedules work
 orders and tracks them as they move through the shop
 floor. Monitor efficiency and utilization factors by reviewing
 the progress and current status of each job. Provides
 up-to-the-minute information about production activity.
 Integrates with Accounts Payable, Accounts Receivable,
 Bill of Materials, General Ledger, Sales Order
 Processing, and Purchase Order Processing.

Building Blocks

Other Modules at a Glance

16

Accounting
 • Accounts Payable - Provides complete payables
 tracking, accounting, and management of accounts
 payable and check writing functions. Use a flexible
 payment selection for improved cash flow or vendor
 discounts, and project future cash requirements.
 Integrates with General Ledger, Purchase Order
 Processing, Inventory Control, Bill of Materials, Sales
 Analysis, and Shop Floor Control.

 • Accounts Receivable - An easy-to-use system for
 processing invoices, cash receipts, statements, and
 customer reports. Accurately track and control
 customer history information and define information
 regarding inventory availability, order status, prior-
 shipped orders, pricing, credit information, payment
 history, and scheduled receipts. Integrates with
 General Ledger, Sales Order Processing, Bill of
 Materials, Shop Floor Control, and Sales Analysis.

 • General Ledger - Provides automatic posting of
 transactions with easy data access and full-featured
 financial report generation. Integrates with all other
 AddonSoftware modules.

Distribution
 • Sales Order Processing - Handles quotations and
 orders in a simple, straightforward manner. Answer
 questions quickly about order status, special pricing,
 inventory availability, scheduled purchase order receipts,
 open order tracking, sales, blanket order processing, and
 payment history. Integrates with General Ledger,
 Sales Analysis, and Shop Floor.

 • Purchase Order Processing - Create both requisitions
 and purchase orders. Identify potentially late shipments,
 recall a list of purchase orders for any item or vendor,
 and keep informed of all outstanding items by vendor
 or item. Maintains complete purchase and receipt
 histories. Integrates with General Ledger and Shop Floor.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Building Blocks

• View a short video demonstrating AddonSoftware Shop Floor Control at
 youtu.be/K6NzWZs0z10

• Download AddonSoftware by Barista at links.basis.com/getaddon

Figure 2. Load Balance Inquiry offers real-time filtering and displays results in a graphical chart control

Figure 3: Shop Floor Calendar maintenance

Other AddonSoftware Modules
The AddonSoftware building blocks are bundled into Accounting, Distribution, and
Manufacturing. While Payroll is not part of this suite, Payroll version 6 or 7 can run in a
hybrid fashion from within Barista.

Summary
With all of the bundles and modules complete, AddonSoftware is now primed to provide
the building blocks you need for your vertical-market solution. And thanks to the
capabilities of Barista and Git (see the ‘Git’-dy Up, Developers at links.basis.com/12git)
for allowing and managing customizations – even through upgrades – you can easily,
efficiently, and confidently satisfy customer requirements without the fear of being
“stuck in time.”

Register today
links.basis.com/tcreg

go from this...

...to this!

Attend this all new
training class

May 17th

 after TechCon2013

Learn how to

Make
Your Web App

Sizzle With CSS

17

Load Balance Inquiry uses a BBjChart control to show scheduled vs. available
hours, as shown in Figure 2.

Figure 3 shows a sample of the the Shop Floor Calendar, which is now much easier
to view and maintain with an editable grid control.

http://links.basis.com/tcreg
http://links.basis.com/12git
http://links.basis.com/getaddon
http://www.youtube.com/watch?v=K6NzWZs0z10&feature=youtu.be

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

The Dialog Wizard launches and offers a suggestion of the
program path to the program that is to be generated as shown
in Figure 2; choose among the top level window IDs to steer
this session of the wizard and then click [Next].

The Dialog Wizard’s second frame shown in Figure 3 lists the
control names derived from the controls in the resource file
and allows selection of the access scope of the member field,
the variable name (or class member field) to be used in the
program, the basic type of the variable, and a flag for whether
the field is a required input. Click [Next].

This utility, as a minimum, requires a definition for the window
close event, so select the control name that represents the top
level window and either double-click on the “Close” event, or
select the “Close” event and click on the right arrow button to
add the Close event to the list of program events, as shown in
Figure 4. Click [Next].

he Merriam Webster dictionary defines dialogue
or dialog as "a conversation between two or more
persons; also: a similar exchange between a person
and something else (as a computer)." It is in this

second context that this article will delve further and describe
a new BASIS tool that allows for the creation of the program
that manages a dialog between a user and a computer.

The new Dialog Wizard, accessible from the IDE, is a modern
and powerful alternative to AppBuilder. Its key advantage
over AppBuilder is that it generates fully object-oriented BBj
programs from a resource file, automatically generating the
callbacks and the method stubs. But, quite interestingly, it also
preserves custom editing of the resultant BBj code, allowing
you to run a second or third pass of the code generator to
leverage any changes you may have made to your resource
file. It also optionally generates the automatic tool button
integration to Barista. In addition, the Dialog Wizard gives you
the ability to automatically test the resultant code, offering
a launcher to launch a GUI or BUI version of your code.
And, if that wasn’t enough, it also generates Javadoc-like
documentation from comment lines in the code!

Let’s go through the steps and see just how quick it is to go
from a resource file to a running program.

Resource File to a Running Dialog Program
After creating the resource file for a simple customer
maintenance form, right-click on the resource name in the
Filesystems navigation tree of the BASIS IDE and choose
"Run Dialog Wizard" as shown in Figure 1.

18

Development Tools

 T

By Ralph Lance
Software Engineer

The Magical Reusable Dialog Wizard

Figure 1. Filesystems option to Run Dialog Wizard

http://links.basis.com/dialogwizard

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

The last panel (Figure 5) offers some selections
that we’ll visit a little later. For now, skip those by
clicking [Finish] to generate the BBj custom dialog
class program.

19

Development Tools

Figure 3. Control names from the controls in the resource file

Figure 4. Add the Close event

Figure 5. The final panel of the Dialog Wizard

Figure 2. Dialog Wizard file paths

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Use a Dialog Wizard-generated Class in Conjunction With Barista
The Dialog Wizard is a productivity tool for individual dialogs that optionally can work
with Barista. In other words, Barista isn’t required to use the the Dialog Wizard or
to run dialogs generated by it but it allows for the seamless integration of the dialog
programs into Barista when so desired.

To illustrate this process, we'll run the Dialog Wizard again and make some
changes in the toolbar section. We’ll also add some code to an “Options”
toolbutton to mimic an application enabling or disabling various toolbuttons to fit
the context of the application.

First, we select where we would like to place the toolbar. In our example, we’ll place
it at the top of a maintenance form (see arrow #1 in Figure 8). In order to show the
interplay between the toolbar in our dialog and the Barista MDI, we change the type
of button used in the toolbar from menu to toolbuttons (arrow #2 in Figure 8). With
this change, we can take advantage of the toggle function (arrow #3 in Figure 8) for
showing interaction between our dialog class and Barista.

20

Development Tools

That’s all, in seconds the Wizard
generates the requisite code
automatically. Next, simply run
the program and a small selection
dialog then appears (Figure 6)
offering choices to test the program
in either GUI or BUI (Figure 7) or to
rerun the Wizard.

Figure 6. Test choices

One thing to note is the Dialog Wizard
does not use data files, per se, for
settings entered or chosen in the
wizard for program generation. The
program code itself contains this data.
Through the use of identifiable begin
and end code-blocks, for example,
rem /** DLGWIZ_DDX_BEGIN **/
and its matching end-block
rem /** DLGWIZ_DDX_END **/,
the wizard knows where to look for
this data and parses what it needs
from the program code. Any code
outside of these blocks is ignored
and will remain intact during the
regeneration process.

Figure 8. Defining the toolbar for Barista integration

Figure 7. Test samples in GUI (left) and/or BUI (right)

1

2

3

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Click [Finish] to regenerate the program
automatically. The code shown in Figure 9
now contains method stubs for all of the
toolbuttons on the toolbar.

Next, we add a little bit of code shown in
Figure 10 to the "Options" toolbutton
to enable and disable the four navigation
buttons when the "Options" button is
clicked.

These two methods are available for enabling
and disabling toolbar buttons in the dialog
as well as the corresponding toolbar button
and menu item, for running the dialog class
in Barista.

The new code lives outside any Dialog Wizard
begin and end blocks, and is therefore

preserved between
program generations. If
we now run our program
in GUI, and click on the
[Options] button, we will
see the record navigation
buttons toggle between
an enabled and disabled
state. Additionally, if we run
this class inside of Barista
(see Figure 11), we also
see that the corresponding
toolbuttons and menu

items in the Barista MDI match the enabled
state of the navigation buttons on our form.

Summary
The new Dialog Wizard is great for rapid
application development of your GUI apps,
your BUI apps, and your custom dialogs that
may not fit well into the core Barista data
dictionary driven paradigm. You can create
hand-crafted code and very easily plumb it
into Barista. The Dialog Wizard encourages
good development practices, as it results
in documented object oriented code. It is
also flexible enough to handle multiple
executions against resource files that
change over time as the program matures.
See for yourself how helpful it can be on
your next coding project!

Figure 9. Generated code for the toolbuttons

Figure 10. Code to enable/disable the toolbar buttons

21

Development Tools

Figure 11. All record navigation buttons are disabled as a result of pressing [Options]

See Dialog Wizard in the
online documentation at
links.basis.com/dialogwizard

http://links.basis.com/dialogwizard

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

BBj® 12 includes significant optimizations to the string handling code and to
various verbs and functions. Java 7 also includes some enhancements to
the operation of the Just-In-Time (JIT) Compiler. Often, a given optimization
will only apply to a specific portion of the code, or a particular programming

idiom, but the optimizations included in the release of BBj 12 and Java 7 are unique
in that they apply to virtually every program that runs on the BBj platform and on the
Java platform.

Consider that in BBx®, string values and string variables are used on nearly every line
of code. If we improve string performance even just a small amount, it will improve
the performance of a large number of lines of code in a BBx program. Similarly, if we
improve the performance of a large number of functions in the language, every line of
code that uses a function has the potential to see some improvement. Optimizations
to these core language features enhance the performance of every program written
in BBx.

The release of Java 7 brings similar improvements. The Java Virtual Machine (JVM),
on which the BBj platform runs, has a runtime component called a JIT Compiler.
The purpose of the JIT compiler is to transform code from a platform-independent
interpreted format into instructions specifically tailored to the underlying hardware.
Improvements to the JIT compiler affect all Java-based programs, including BBj. This
article will explain some of the optimizations and show some of the results of the
efforts BASIS took to make your code run faster.

Java 7 Improvements
Research into the operation of typical Java programs has shown that the vast majority
of time executing code is spent in a small fraction of the entire codebase, and BBj is
no exception. The code that the Java Virtual Machine exercises is partly dependent
on BBx code interpreted by the BBj interpreter, but BBj performs common operations
on every line of BBx code. As the JIT compiler compiles those operations into native
code for the host platform, those operations BBj executes most frequently benefit from
highly optimized code specifically targeted for the host OS and hardware.

Since BBj Services usually runs for a long period of time, often running many
thousands of interpreter instances, the JIT compiler has time to continue to optimize
even those portions of code that are not executed as frequently. Over time, the JVM
adapts to the characteristics of your programs and tailors its optimized, generated
native code to run your program as fast as possible, identifying the most likely code
paths taken by the BBj codebase when running your code and ensuring those paths
run as quickly as possible.

In the late versions of Oracle's release of Java 6 and with improved performance in
Java 7, the JIT compiler added an important optimization called "escape analysis."

Escape analysis allows the JVM to
eliminate unnecessary synchronization
and allocation. If the JVM can determine
a hard upper bound on the lifetime
of a particular object, it has the
opportunity to avoid allocating the
object at all. With fewer constraints, it
can also guarantee the object is never
shared between two distinct threads
of execution. That guarantee allows
the JVM to eliminate any locking done
on an object. All programs benefit
from avoiding unnecessary work, BBj
included, and since BBj often allocates
objects that are never shared between
two threads, eliminating unnecessary
locking can produce visible gains in
your BBx application.

BBj 12 Improvements
Of course, these improvements
only indirectly affect BBx code by
improving the performance of the
BASIS codebase. At the same time
as the engineers at Oracle have
been improving the performance of
Java code, BASIS engineers have
been busy at work directly improving
the performance of BBx code. Here
is some insight into what goes on
behind the scenes as we improve
our codebase, and ultimately, the
performance of your application code.

Soliciting Samples
In the summer of 2011, we sent a
request to the developer community
for samples of code that showed
opportunities for performance
improvements. In addition, we
identified a few specific areas through
our customer support transactions
that we wanted to address with these
changes in the string handling code.
We handcrafted several tests that
executed very specific individual
operations ranging from common
functions and verbs to various
operators. We also wrote a program
generator that could automatically
generate programs that select from a
wide variety of normal string-related

 B

22

Language/Interpreter

Going Fast, Faster, Fastest

By Adam Hawthorne
Software Engineer

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 23

Language/Interpreter

operations, including familiar ones like
substring and concatenation. All these
samples allowed us to have baselines
from a wide array of sources so we
could compare with previous versions of
BBj to ensure we did not introduce any
significant performance regressions with
our improvements. However, in order to
perform a proper comparison between
the old code and the new code, we
needed a test harness that could paint
an accurate picture of the performance of
these samples.

Performance Testing Framework
When getting a sense for how fast
something is, it is often tempting to
write a quick benchmark, run it a few
times, and calculate a simple average
using the arithmetic mean. Repeating
this a number of times, the inaccuracy
and noise evident in that kind of data
becomes readily apparent (especially
when trying to reproduce results to
show-off the performance improvements
to the management team!). BASIS'
continued reliance on the cloud for its
vast computational resources makes it
easy to run several tests, but attempting
to produce reproducible results in an
environment subject to such a high
degree of external influence proved a
challenging task in and of itself.

An Insider Look at BASIS Testing at
links.basis.com/12testing discusses
a client/server based testing tool
developed specifically for running BBj
programs simply known as "the testbed."
After making a few improvements to this
internal tool, we adapted our sample
programs to run in that environment
and to execute several hundred times
each, for each run of the performance
test suite. We use a statistical method
called bootstrapping to identify a range
of median values and produce a reliable
confidence interval for the median
running time of each test, which allows
us to determine to a reasonable degree
of certainty both that our timing values
are consistent and whether our results
show a statistically significant increase
(or decrease) in performance.

Finally, certain external effects such
as the JIT compiler and the garbage
collector tend to skew later numbers
in the tests, so we modified the
performance test suite to perform a dry
run through all the tests to allow those
effects to settle before finally recording
the results of our tests.

Making it Faster
Having a way to measure the performance is certainly an important part of our
optimization efforts, but actually improving the performance of the code requires its
own effort. Part of that is finding where we can improve the code.

Let’s look at an example that illustrates one of the motivating issues we found.
To avoid the overhead of copying bytes with every assignment, BBj string values
will share a buffer with other strings when possible. This sharing occurs in several
ways, but by instrumenting our internal buffer handling code, while running some
of our test cases, we discovered some opportunities to enhance our buffer sharing
implementation. In the following figures, each group of cells represents a buffer
of bytes that multiple BBj string values refer to. The shaded portion of each cell
represents the portion of the buffer used by the corresponding shaded expression
in the associated program text.

Originally, a typical program might have code that looks like this:

	 1: a$ = "xxxxxxxx"
	 2: b$ = a$
	 3: c$ = b$(6,3) + "xx"

After line 3, the buffer's contents appear as in Figure 1.

Figure 1. Buffer contents after line 3

	 4: b$ = c$

After line 4, our buffer sharing code would ensure that a$, b$ and c$ were using the
same buffer at the end of the code which avoids having to copy the buffer (Figure 2).

Figure 2. Buffer contents after line 4 (before optimizations)

The optimization opportunity presents itself when there is not enough room in the
buffer in line 3 above to append the value "xx". In this case, in order to continue to
be able to share the buffer, the original buffer handling code would copy the entire
contents of the buffer above to a new larger buffer, copy in the contents of the
appended string, and modify a$, b$, and c$ to refer to the new byte buffer. Since
some copying must take place to allocate the new buffer, it is not necessary for the
new buffer to continue to share the contents with the old buffer. After making this
change, the buffers look like Figure 3.

Figure 3. Buffer contents after line 4 (after optimizations)

http://links.basis.com/12testing

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Another benefit arose because of
this change. When there are no
longer any references to a$, we no
longer need to maintain the memory
allocated for that buffer and we can
eliminate it. This initially requires a
little more memory to maintain two
buffers, but eventually, it pays off
because of the ability to reclaim older
buffers.

In a certain code pattern, this
optimization was extremely effective
because we performed this kind of
operation in a loop. In this case, the
beginning of the buffer (the portion
referred to by a$) would continue
to grow. The buffer management
code cannot track the extent of each
use of a buffer without suffering an
extreme performance penalty, and so
the act of copying the buffer in order
to append would copy hundreds or
even thousands of bytes that were no
longer in use.

Papercut Optimizations
We also discovered other optimization
opportunities. Many of these
optimizations are only noticeable
on a very small scale, but we found
and implemented over a thousand
of these optimizations throughout
the codebase. We termed them
"papercut" optimizations because
individually they are not very serious,
but when considered all together,
they can produce a significant
improvement in a program's execution
time. We were able to eliminate
unnecessary temporary buffers in
several hundred locations throughout
the BBj codebase. We tightened up
certain BBx function implementations
to eliminate unnecessary allocation
and we improved the algorithms
behind some of the common BBx
functions and verbs.

Results
The following charts are some results
from our performance testing. Each bar
in the graph is a specific performance
benchmark as described previously.

Figure 4 shows the differences between
BBj 12 on Java 7 and BBj 12 on Java
6. For the vast majority of our tests, the
JIT compiler improvements in Java 7
significantly enhance performance even
after our optimizations. There are a few
performance regressions in Java 7, but
it is important to note that these are
micro-benchmarks, and each individual
test is unlikely to show a significant
difference in a full application. These
charts together show that the overall
improvements are very likely to outweigh
any individual regressions.

24

Language/Interpreter

Figure 4. Performance comparisons in Java 7 vs Java 6

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Figure 5 showcases the effects of our
optimization efforts. It is important to
note these are micro-benchmarks that
exercise a specific area in our code
and also verify that our optimizations
are actually improving performance for
those instances. For example, one can
see the extreme case outlined in the
above section when looking at the first
bar of the first chart below, showing
a dramatic 99.45% improvement in
execution time (i.e., almost all the
execution time disappeared). However,
the combined picture of these charts
again reveal an overall improvement
in BBj performance, which will, in
turn, improve the performance of your
application code. Efforts to address the
few minor regressions in these graphs
are already under way.

Summary
BASIS engineers commit themselves to
improving the performance of BBx code.
Often, this goes on as we do our day-
to-day work, but from time to time, we
take opportunities to make performance
the sole focus of our efforts and the
results are telling. As we continue
to look for ways to optimize the BBj
platform, we expect the performance of
BBx programs will continue to improve
so you can concentrate on just writing
application code.

25

Language/Interpreter

Figure 5. Performance comparisons in BBj 12 vs BBj 11

Find out more about the JIT compiler optimizations, both in general and specifically in Java 7
 The Java HotSpot Performance Engine Architecture White Paper at bit.ly/i1YnXn
 Java HotSpot Virtual Machine Performance Enhancements at bit.ly/L9GjBz

•
•

www.basis.com/advantage

Missed an Issue?

http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html
http://www.basis.com/advantage-index

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

	
Figure 2 shows the audit job from Figure 1, in the list of available audit jobs. “Type”
indicates it is an audit job; “Last In Sync” shows the time the audit job was last in
sync with all audit changes. “Running” displays YES or NO to indicate whether the
job is actively running. If the job is paused, audit actions still accumulate in a queue
but are not written to the audit database until resuming the job.

ost companies have a number
of employees running their
applications on a daily
basis. While the application

or database may manage who has
access to the system, legislation such
as HIPPA or Sarbanes Oxley may
mandate monitoring write or remove
operations made to one or more data
files accessed by the application.
Change Audit Logging in BBj® makes
the process of building an audit trail
fast and easy to implement.

How It Works
Change Audit Jobs consist of a
job name, location for the audit log
database(s), a list of one or more
directories and/or data files to be
monitored, and the frequency at which
the log database should rollover.
When an application changes a
monitored data file using direct file
access calls from a BBj program or
via SQL, the auditing system logs
the change and type of change to
an “audit log database.” At any time,
an administrator can query the log
database using the interface built into
the Enterprise Manager or query the
log database tables directly using SQL.

When using change auditing, overhead
is typically minimal since in most cases
administrators configure jobs to use

the default asynchronous mode. In asynchronous mode, the audit system adds audit
details to a background queue rather than waiting for the log operation to complete
before continuing. In synchronous mode (not recommended), it completes the
logging of the audit details before allowing the original write or remove operation on
the file to complete.

Creating a Change Audit Job
To create a change audit job, select the “Auditing” item in the Enterprise Manager
(EM) navigator to display the list of currently configured audit jobs. Click the
button to create a new job. Figure 1 shows the “Audit Job Configuration” dialog.

26

DBMS

 M

Turn On Data Auditing

By Jeff Ash
Software Engineer

Figure 1. Audit Job Configuration dialog

Figure 2. Audit Job List panel

http://www.soxlaw.com/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Additional Benefits
There are additional benefits of
using a BBj ESQL database for the
log. First, it gives the administrator
the ability to configure user access
permissions to the audit database in
the same way one would configure
user permissions on any other BBj
database. The other notable benefit
is that using iReport or BBJasper,
administrators can create more
robust, limited, and/or customized
reporting for others to view in an
external application without the need
to grant them access to the EM.

Summary
If legislation such as HIPPA or
Sarbanes Oxley mandate that a
company needs to monitor write and
remove operations made to one or
more data files that their application
uses, the Audit Logging feature built
into BBj is a great option. Setup and
configuration takes only minutes and
does not require any new coding or
even shutting down BBj Services.
Further, with the use of an SQL
logging database, administrators
can use the built in Audit Log Viewer,
or query the data directly using SQL
for even more power and flexibility.

Since the auditing system stores audit log
messages in a BBj ESQL database, the
database list in the EM shows the auditing
databases with all the other databases.
Audit job databases use the name of the job
followed by the date created and a counter
if there are more than one for a given date.
Figure 3 shows an audit database in the list
of databases.

Viewing the Audit Log Data
Audit logging data resides in a BBj ESQL database so there are two ways to access
the data: the Audit Log Viewer in the EM, or querying the database directly using
SQL. We won’t go into the SQL option in detail except to say that the auditing system
logs each type of operation to a different table in the audit database. The Audit Log
Viewer shown in Figure 4 makes it easy to search and access this data. Use the
button to query the audit database.

27

DBMS

Figure 4. Audit Job Viewer

Figure 5. Audit Operation Detail

Figure 3. Auditing Database

For more information, read
Jazz up Your Applications –
Seamlessly Embed JasperReports
at links.basis.com/09jasperreports

In addition to general information about each audited operation, the viewer provides
drill-down support to further investigate the details of each change. Double-clicking on
an operation in the viewer opens another dialog which displays the record details. For
example, an UPDATE_RECORD operation shows the old record and the new record
after the change, while an INSERT_RECORD operation shows only the new record
added to the file. A string template entry box makes it easier to evaluate the record data
since the audit operation stores the record data in its raw format. Figure 5 shows
what the user sees when viewing an UPDATE_RECORD detail.

http://links.basis.com/09jasperreports

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc28

Building Blocks

containing 5 data files and 4 programs, is the application we will use for this
illustration. The programs work together to provide minimal file maintenance
capabilities for the employee data. After applying our Barista sprinkles to the CUI
application, Figure 1 shows the resulting GUI lookup launching from a keypress.

Although the user can easily navigate to the previous and next record in the
CUI version using the [Page Up] and [Page Down] keys respectively, there is no
provision for quickly finding one of the over 800 employees in the file if you don't
know the employee's ID. This is exactly the deficit this article addresses.

Caffeinate
Accompany me as I take you through the general steps to the solution. If you would
like more detail to these steps, check out the links at the end of this article and
consider attending a Barista training class.

By Ralph Lance
Software Engineer

Barista
Caffeinates a
CUI App With
GUI Sprinkles

 L
egacy applications can
easily contain thousands
of programs and data files
created over many years.

When making the decision to bring
them all into the graphical world of
today's applications, the task can be
overwhelming if not taken one step at
a time. This article gives an overview
of how to begin integrating fully-
functional graphical components with
the least amount of effort using the
Barista® Application Framework and
instantly begin benefiting from the
myriad of built-in features that Barista
brings to your application.

To begin this overview, start with the
ubiquitous grid inquiry that benefits
most from a graphical user interface.
For another example of integrating
Barista functionality into a legacy
application, read DocOut Easily
Modernizes BBx Report Output at
links.basis.com/12docout.

The "CD-Jazz Store," a simple
BBx® character-based application

Figure 1. The CD-Jazz Store CUI program with the GUI lookup

http://links.basis.com/12docout

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 29

Building Blocks

Step 1: Create a Barista application
The first step in working with Barista is to create an application. For detailed “how to” steps, refer to
Create Vertical and Customize Applications - Part 1 listed at links.basis.com/baristaref.

Step 2: Import the application's data dictionary into Barista
Using the “Import to Barista Dictionary” function, import the BASIS data dictionary that describes the
tables of our CD-Jazz Store application. If your application does not have a data dictionary, simply
make one for the table(s) you will be importing – a process that can be as simple as cutting and
pasting the string template for your table (file) from your program code into the BASIS Data Dictionary
editor in Enterprise Manager. The import creates element types and table definitions that Barista uses
for its maintenance forms, reporting, and inquiry systems. It also creates a beginning menu for our
application. For our purposes, we will just import the one employee table used in the query.

Step 3: Create a custom query
Now that we have defined our application tables in Barista, we can create the query (Figure 2) that
we want to bind into our existing character application by running “Query Definitions” in the “Barista
Development” menu and describing the columns (fields) for our query.

Figure 2. Create an employee lookup query

Figure 3. The result of the new employee query

After Barista generates the SQL statement, we can immediately test the query as shown in Figure 3.

http://links.basis.com/baristaref
http://documentation.basis.com/BaristaDIP/Customizing Barista Applications_part1.pdf

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc30

Building Blocks

width, and to select all or only highlighted rows of the grid for output. The sample grid in Figure 5 shows a typical layout with the
Search bar in the upper left and the filter wizard button in the upper right. Special icons appear next to the column headers
to give more information about that column; the blue triangle shows the “sorted by” column, an asterisk would indicate that
a filter has been applied to the column, and the key icon indicates that the field is indexed, which will sort faster than non-
indexed fields.

The program continues normally, displaying the employee data in the CUI program previously shown in Figure 1.

Let's take a look at this code block and dissect it by line number.

Figure 4 shows the code block that sets up and launches the Barista query after the user presses [F3].

Figure 4. Code to launch the Barista query

8010 determines the BBj installation directory

8020 sets up a unique name for the group namespace variable that we would like to use for the return value

8030 invokes the Barista query via an SCALL command. The -w argument in the SCALL command tells Barista that
we will wait until the user dismisses the query, either by closing the query window or making a selection. Read more
about it in the “Barista Launch Task” article noted at the end of this article for a detailed explanation of the launch
program arguments.

8040 and 8050 query the group namespace variable to retrieve the selected employee stored in its value. If the user
closes the query without choosing an employee, the namespace variable will not exist (err=) or be empty. The code
that scans for the caret character (^) handles multiple selections, as Barista queries optionally allow for multiple
selections separated by the caret.

8060 and 8070 load the employee ID into the same input variable just as though the user had actually keyed in the ID
in the CUI program.

Step 4: Incorporate the new lookup function into the character app
Next, we add a new [F3] lookup function to the employee maintenance screen and have it invoke our custom query via an
SCALL to a Barista program and respond with the employee that the user selects. In order to retrieve the user selection from the
query, we use a mechanism called a “namespace” with which two or more BBj programs can share data and event notification.

Add Sprinkles
While the ease and efficiency of this GUI lookup is worthy on its own
merit, this it really just the tip of the “whipped cream”-berg. Barista
provides a whole new world of query and reporting capabilities to
users who are now empowered in ways not previously possible.
What might have required assistance in the past from an IT person,
now can easily be completed without writing programs or purchasing
a third party application. In addition, this new capability offers several
output types for the grid data – output to a system printer or pdf, csv,
xml, xls, and txt file formats.

Barista’s query for grids provide multiple methods to search, sort,
filter, adjust column display, adjust column order, adjust column

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 31

Building Blocks

Users can select a single column header for an ascending or descending sort or can select multiple columns by
pressing the [Shift] key while selecting the columns to sort on multiple columns.

Filter
A Filter Wizard allows users to create and save custom filters quickly and easily. Select the [Filter Wizard] button in
the top right corner of the query grid frame to launch the wizard. The Wizard (shown in Figure 7) requires user input for
the Operator, Value, and Column.

Search/Sort
The Search feature creates a quick case-sensitive or case-
insensitive search filter of the query grid. As soon as the user selects
the column header and then begins typing the search characters in
the Search bar, the filtering begins. The % is a wildcard character so
entering ‘%Sport’ will return all strings in the selected column that
contain the word ‘Sport’ (see Figure 6). To restore the grid back to
displaying the full result set, the user would simply clear the contents
of the Search field.

Figure 5. Sample customer master grid

Figure 6. Wildcard search result

Figure 7. Filter Wizard

The Operator options appear in a dropdown list containing Greater than, Less than, Greater than/Equal to, Equal to,
Not equal to, Begins with, Ends with, Contains, Does not contain, Is contained in, and Is not contained in.

To reuse a defined filter, the user may save the filter by giving it a name, and further mark whether to share the custom
filter to all users in the organization. The shared filter will appear as a dropdown option next to the Filter Wizard button
in the top right corner of the frame. See the filter “Oregon Customers” displayed in Figure 7.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Gaining all of this functionality handily meets most all of any user’s simple report and output needs or wishes.

Summary
BASIS developers can use this technique to ease their users into graphical user interfaces with minimal effort and
disruption to existing code by leveraging the out-of-the-box functionality Barista provides. With the addition of as little as
ten lines of code to a CUI or GUI application and a few minutes spent configuring a Barista query, you can delight your
users by delivering untold productivity gains to their daily tasks. In fact, with the query's sorting and filtering capabilities
as well as flexible output of the grid contents or selections in various formats and mechanisms such as PDF, XLS, fax or
email, users get a big bang for their buck, all with very little effort on the part of the developer. You’ll be their Barista of
choice to caffeinate their applications!

32

Building Blocks

• Review DocOut Easily Modernizes BBx Report Output at links.basis.com/12docout
• For more information, refer to these Barista resources at links.basis.com/baristaref
 • Create Vertical and Customize Applications - Part 1, Part 2, Part 3,
 • Create and Synchronize Applications
 • BASIS Data Dictionary Import
 • Query Definition System
 • Barista Launch Task

Figure 10. Document Output Selection window

Figure 8. Query selection options

Figure 9. Inquiry Columns window

Query Selection Options
Barista provides additional options when right clicking on a record
in the grid (Figure 8). While all of these options are valuable, the
Inquiry Columns function is one worth looking at more closely.

Selecting Inquiry Columns (Figure 9) allows users to change which
columns display and in what order by marking the Show checkbox
and then moving the item into the desired position using either
the [Move Up]/[Move Down] buttons or dragging and dropping the
highlighted column. All edits are preserved at the user level when
returning to the grid. To undo selection and return to the default
column view, simply click the [Restore] button.

Other Query selection options include –

• Copy - copies the columns to the clipboard, allowing the user to
 choose whether to include the database table/column names and
 text column headings, and to select the column delimiter and text
 identifier characters.

• Export Records - quickly exports the contents of the grid or
 selected columns while offering several export options; Document
 Output Viewer, Document Output Selection Form, as well as the
 type of output.

Output
After sorting and filtering and massaging the data to the user’s
delight, the user can easily output the results in a variety of ways
by just making one or more selections in the the Document Output
Selection window (Figure 10).

http://links.basis.com/12docout
http://links.basis.com/baristaref
http://links.basis.com/baristaref
http://documentation.basis.com/BaristaDIP/Customizing Barista Applications_part1.pdf
http://documentation.basis.com/BaristaDIP/Barista BASIS DD Import.pdf
http://documentation.basis.com/BaristaDIP/Barista Query Definition System.pdf
http://documentation.basis.com/BaristaDIP/Barista Launch Task.pdf

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Your network provides access to your applications. Anyone connected to your network
could launch your application with Java Web Start, if desired. If you make your
application available on the Internet, people could connect with almost any device –
smartphone, tablet, laptop, or desktop – to your application. Perhaps they are using a
fast connection on their desktop at work. They could be relying on WiFi at a customer’s
job site. They might even be using a cellular connection built into a tablet from the
beach. It’s impossible to predict all the different types of network clients that your
application must deal with.

From version 12 onward, BBj® makes use of Java’s Pack200 technology, which cuts
the bandwidth required for initially launching a thin client on first install or after an
upgrade by over 60%. Jetty, the built-in Web Server that ships with BBj, automatically
compresses jars with Pack200 reducing, for example, BBjThin client .jar from over
6 MB to less than 3 MB. On a local network, this compression saves users a few
seconds; over the Internet, it saves minutes.

BBj’s Web Server also uses Gzip compression for many resources. Gzip speeds up
both BUI and static resources served from the htdocs directory. Gzip provides the
biggest benefit when used on text files. All standard web files such as HTML, CSS,
and Javascript are readily compressible by Gzip. Gzip does a really fantastic job with
core BUI files, reducing 1.3 MB files down to less than 400 KB. The payoff of this huge
saving is most valuable and most visible on smartphones. Decreasing the amount of
required bandwidth saves customers significant time and money resulting in a greatly
improved user experience.

Compression in BBj happens behind the scenes. The Jetty Web Server examines your
resources and compresses them as needed. Jetty compresses any jar required by the
Web Start thin client before sending it over the network. Compression reduces the size
of the JavaScript files that support a BUI application by 60%. Jetty also compresses
additional resources such as custom CSS or a customized HTML index page. All of
this happens behind the scenes without any extra effort. Jetty provides all of the speed
without any administration overhead.

Summary
BASIS takes advantage of several industry standard techniques to make your business
application as small and nimble as possible on any network –

 • Pack200 drastically reduces network resources for downloading Web Start clients

 • Gzip speeds up BUI

 • Jetty compresses virtually every resource served with state-of-the-art tools to save 	
 your customers time, and money.

Compress coal and you get diamonds. Compress web resources and you get happy
customers. Priceless.

33

Language/Interpreter

etworks grow ever more
complicated. From Ethernet to
WiFi, consumers are connecting
more devices to the Internet

worldwide and in more complicated
ways. Each technology differentiates
itself with subtle advantages, but every
networking method has limits. A network
can only transmit so much information
per second, which means each network
has a limited bandwidth. A state-of-the-
art fiber optic connection transmits an
HD movie in seconds while it might take
a cell phone hours to download a song
over GPRS.

The high cost of networking makes
efficient use of bandwidth important.
Economic costs are relatively small and
getting smaller, but a user paying for a
cell phone data plan might disagree. For
example, Amazon charges around 12
cents per transmitted gigabyte, so using
those bytes wisely will save money.
Cell phone providers often charge for
data sent to a phone, so compression
will save money. Beyond cost savings,
minimizing the number of bytes
transmitted saves something far more
valuable - time. Users have no interest
in watching screens load. The more
narrow the connection, the more critical
it is to be efficient. Cell phone users
want their data immediately.

By Jason Foutz
Software Programmer

 N

Compressing Apps for Zippy
Network Performance

Compressing Apps for Zippy
Network Performance

http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Wi-Fi
http://en.wikipedia.org/wiki/Pack200
http://en.wikipedia.org/wiki/Gzip

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

DocOut Easily Modernizes BBx Reports
Add Print Preview, PDF, XLS, CSV, XML,
Google Docs, Fax, Email, and Archiving

Building Blocks

34

By Ralph Lance
Software Engineer

ocOut is the document output
subsystem component of the
Barista® Application Framework
RAD tool with a ton of built-in

benefits and features. Developers can
now leverage these benefits from new
or existing PRO/5®, Visual PRO/5® or
BBj® code, without having to use the
entire framework, and with very little
programming effort!

To take advantage of DocOut,
developers would simply change all of
their 'PRINT @'statements to vector
assignments and invoke the DocOut

 D

Figure 1. DocOut report in print preview

object. With those changes in place, applications are upgraded to a modern reporting
system chock full of new features including print preview, multiple output format
options, user interactive column sizing, report archiving, and more! After converting an
application to use DocOut, a pleasing print preview of the report appears similar to the
one shown in Figure 1.

Follow along in this review of the DocOut benefits and see the enhanced sample application.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Building Blocks

35

Figure 2. Save As output formats

Feature Overview
The DocOut report provides the same
columnar or tabular report as the
legacy program, but the DocOut system
supercharges it with several extra
capabilities. DocOut offers a number of
output file types including PDF, XML,
CSV, and XLS, shown in Figure 2, and
puts the user in control.

After selecting the [Save] menu button,
the user is able to choose the name of
the saved report as well as the output
type from multiple file formats. DocOut
even provides an interface to Google
Docs so users can save their reports
in the cloud for ubiquitous access from
any Internet-connected machine or
device. Raw output is also an output
option for those who use a third party
tool to manipulate that output. Sending
the report to the printer is a standard
option, of course, but the DocOut
system also allows the user to fax
or email the report directly from the
preview window.

In addition to viewing options such as
scrolling through the report, sizing the
output, and zooming in and out, the user
is also able to affect the layout of the
report directly from the preview window,
as shown in Figure 3. DocOut gives the
user the ability to adjust the widths of
individual columns or even hide them if
they are not applicable for the report’s
recipient. To aid in alignment for numeric
data, DocOut can optionally modify the
report to use a fixed-width font. Talk
about the putting the user in control!

DocOut is flexible enough to give not
only the user but also the application
extensive control over the report. By
adding code to automate DocOut’s
output settings, the app is in complete
control over the report – even to the
point of eliminating the user interface.
This is a must-have feature for batch
reports, as the application can configure
and emit all of its reports without
requiring any user intervention.

DocOut also offers a one-step
methodology allowing the user to select
and process a particular output type.
Barista’s Document Inquiry System
is a couple of mouse clicks away,
providing the ability to select multiple
output types and reprint documents.
Additional options are set directly
from the Document Output Selection
window (Figure 4) such as sending

Figure 3. DocOut’s print preview with output column customization

Figure 4. Document Output Selection Dialog

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc36

Building Blocks

“It's very easy to convert an existing report to the DocOut process. Instead of using PRINT statements to
send the data off to the printer, you just load the data into a BBj Vector and let DocOut process the report.
The payoff is huge. The report is rendered in a print preview window and from there, you can adjust columns,
output the report to the printer, convert it to a pdf, xls or delimited text file, email or fax it to interested parties,
archive it, or simply review the data in the print preview and discard it!”

Using the DocOut Object
Everything needed to create amazing reports and output them in various types, including PDF and spreadsheet files, is built
into the system without the need for adding plugins or prerequisites for third party products. Developers not only maintain
complete customization control, but they benefit automatically from new features added to DocOut without requiring any
additional code changes to their applications.

DocOut offers multiple benefits and incorporates an abundance of functionality. But just how much coding effort is required
to take advantage all of this functionality? Let’s take a look. BASIS designed the DocOut Object for use by any BBj program,
obviating the need for the program to run inside the Barista framework. This approach allows legacy apps such as a CUI
PRO/5 app running in BBj, for example, to have greater flexibility when it comes to reporting.

The new code is simple and very straightforward. For a more descriptive overview and detailed analysis of the process, review
the DocOut Tutorial and the DocOut Object documentation referenced at the end of this article.

Our step-by-step example uses the DocOut object to produce a report of employees for a traditional character-based
application called the CD-Jazz Store. Try the examples yourself by downloading the code from links.basis.com/12docout-code.

1. Modify the program to set up the Barista environment instead of opening the printer alias.

	 a. Specify the complete path to the DocOut class when outside the Barista environment.

	 b. Otherwise, use this relative path within the Barista environment.

2. Declare object variables used in the program.

3. Create (instantiate) the DocOut Document object.

4. Set the user authorization. Alternatively, use BBj User Authentication setup in Enterprise Manager.

5. Set the report parameters.

the document via fax or email, saving the document in Google Docs (GDoc) in the cloud, and even launching the
target document once the processing has completed.

Utilizing DocOut saves significant time and money in the development effort. Kurt Williams, of Marex Services
acclaims:

http://links.basis.com/docout_tutorial
http://links.basis.com/docoutobject
http://links.basis.com/12docout-code

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

6. Set the report headings.

What's the next step? Set up the report columns.

The addColumn() method makes this a snap. The application code passes all
of the necessary information for the report columns, including the following:

 • Column heading
 • Base data type
 • Data length
 • Optional column width override in pixels
 • Optional output mask to be applied
 • Optional Barista control type code (for future use)
 • Optional justification code (defaults “L”eft for character, “R”ight for numeric columns)
 • Optional formatting flags that can be used in combination, such as setting the typeface to bold and
 stipulating that the value is a total and should be underlined

Again, the DocOut tutorial and documentation describe these parameters and their permissible values in more
detail. To localize the headings, take advantage of BBj’s translation tools.

Based on the template for the employee record example, the code to set up the report columns is pretty
straightforward:

37

Building Blocks

The use of the caret character in "(S)alary^(H)ourly" stipulates the desire for multiple column header lines.

With the report defined, it’s time to fill it. In this example, simply read through the employees file and store the
individual field values as strings in a BBjVector that gets passed to the setOutputData() method.

If the original application existed before DocOut, then it will most likely have contained PRINT @ statements and
page handling logic. As we can see here, DocOut integration greatly simplifies this code:

The final step is to instruct the DocOut object to actually produce the report and release our program with this code:

http://documentation.basis.com/BASISHelp/WebHelp/bbutil/bbtranslator.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

By default, the DocOut object starts the report generation process synchronously so the program will wait for its completion. To
override this, invoke the setSessionWait()method:

Using the DocOut Object With PRO/5 and Visual PRO/5
With the advent of XCALL, existing Visual PRO/5 and PRO/5 applications can also take advantage of the DocOut Object to
XCALL the BBj program version of a legacy report. DocOut can either interact with the end user via a BBj thin client session on
the desktop or can be invoked in BBj on the server-side only, with no user interface. In that case, one could still run legacy code
in PRO/5 on a terminal emulator while generating the email/fax/pdf/archived document in BBj on the server. To view the report on
a PC running PRO/5 or BBj in a terminal emulator, simply save it as a PDF in a directory on the server that the built-in Jetty Web
Server can access, then provide the URL to the CUI session.

We encourage you to take a look at the documentation for the DocOut Object and the tutorial so you can retrofit your code
by replacing those PRINT @ statements with vector assignments and reap the multitude of DocOut benefits such as archiving,
multiple file formats, and multiple delivery mechanisms, all with the minimum of programming effort.

38

Building Blocks

• Download the code samples in this article at links.basis.com/12docout-code
• For more information about DocOut and the methods referenced in this article, see
	 • DocOut Tutorial at links.basis.com/docout_tutorial
	 • DocOut Object at links.basis.com/docoutobject
• Find BBjTranslator in the online documentation at links.basis.com/bbtranslator

To register, go to links.basis.com/tcreg

Ph
ot

o
cr

ed
it:

 L
as

 V
eg

as
 N

ew
s

Bu
re

au

New hands-on training courses!
Extend your stay in Las Vegas after TechCon2013 for training. Several of
these classes are a one-time offering so don’t miss the chance to put to
use what you learned and saw in action during TechCon!

May 16-17
• Barista Advanced (Beginning Barista is a prerequisite...still time to sign up and
 attend the web-base class on March 18, 20, 22)

May 16
• Eclipse IDE – Editor, Debugger, FormBuilder, Enterprise Manager – SVN Plugin, Java
 Plugins, HTML (Aptana), Plugin
• BASIS Cloud Transformer (Ride the BASIS “lift” to the cloud) + Addon Cloud

May 17
• BASIS CUI to GUI Best Practices (1/2 day AM)
• ERP Building Blocks (1/2 day PM)
• Make Your BYOD Web Apps Sizzle with CSS
• DBMS Enhancements - No Coding Required Replication, Scheduler, Security
 Options (SSL), data warehouse, data recovery plan, best practices; Are you prepared?
 Ever restore from your back-up? Authentication options

http://links.basis.com/12docout-code
http://links.basis.com/docout_tutorial
http://links.basis.com/docoutobject
http://links.basis.com/bbtranslator
http://links.basis.com/tcreg
http://links.basis.com/tcreg

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

New BASIS Training
 Feb 7.................. BASIS DBMS With SQL, Stored Procedures, Triggers, Replication
 Feb 21 Object-oriented Programming With BASIS Custom Objects
 Mar 7 Report Writing With iReport and BBJasper
 Mar 18, 20, 22..... Beginning Barista Application Framework
 	 (required to attend the Advanced Barista class on May 16-17)
Traditional Classroom Training
 May 16-17........... Post TechCon2013 in Las Vegas, NV at links.basis.com/tcreg

For more about the new training format, including course descriptions and to register,
go to www.basis.com/training For more about training, including course descriptions
and registration, go to www.basis.com/training

or many years, BASIS offered
product training courses in the
traditional onsite classroom
format. Later, BASIS expanded

training to reach customers in the
comfort of their offices with web-based
training. Realizing the effectiveness
of our partially recorded Java Breaks,
BASIS ‘canned’ some key training
classes and offered this new format,
blended with live monitoring and
instructor interaction for questions
and answers.

Moving the foundation of web-based
training to pre-recorded content
ensures that students receive
consistent delivery of all the important
points needed to understand the key
concepts for each class. In a pure
“live” session, trainers risk getting
sidetracked and missing important
concepts. Often, time gets away and
the session ends before covering all the
material or trainers might rush through
the last hour in an effort to complete
the content by day’s end. Now students
receive the course content completely,
consistently, and at a comfortable pace.

By Amer Child
Digital Communications/
Web Developer

BASIS Unveils New Training Format
Much to our delight, the feedback on our first three training courses delivered in this
new style was positive from students and trainers, both agreeing that this is a win-
win approach. The BASIS trainers enjoyed the new format better than a live session;
they could better focus on questions the students asked and even pause the video
to fully address them. Students who encountered issues while working the exercises
during the session still got one-on-one help from the trainers. Since the exercises
were also recorded, students could pause as they needed to work through a step, or
get personal assistance from the trainer. The trainer could switch from the recording
to a live desktop and repeat the exercise again and, as needed, remotely access
the student’s desktop to “drive” through the issue. One participant of a recent course
noted in his feedback, “I welcome more classes like this for other BBj components!”

In the future, BASIS customers will see more core training courses recorded
and delivered in this pre-recorded web-based format. In addition to using these
recordings as the backbone to live training courses, BASIS plans to roll them out
for customers to access in a self-paced “on demand” format. In the interim while we
are developing this strategy, students who attend a class can access the recorded
course for two weeks after the initial training class as a resource to practice what
they learned.

Overall, the excitement about the new training strategy is high among customers
and BASIS trainers. We look forward to your participation in future sessions and
to hearing about your experience and your requests for future topics that use this
new training format!

 F

39

http://links.basis.com/tcreg
http://www.basis.com/training
http://www.basis.com/training

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

access respectively. Table and Query Analysis are two of the features that now
give you more information about how to enhance your query performance with
very little effort.

Table Analysis
Table Analysis performs an analysis of the tables in a database and gathers
information about the tables’ contents and structure that allows the SQL optimizer
to more accurately determine how each query can be optimized when applied to
a table. While the way the SQL engine uses this information has not changed,
we made significant improvements in two areas: efficiency in gathering the
information, and the addition of data and dictionary validation or “database alerts”
during the process.

Improved Processing Speed
Version 12 of BBj and above, includes an improved process for gathering the table
analysis information. With this change, customers see the time it takes to analyze
large databases cut by several hours. For example, an extremely large database
from our partner Audev (www.audev.com) took 11 hours to analyze in version 11.11
of BBj. In the improved version 12, the analysis took only 3 hours, a tremendous
gain drastically reducing the load on the machine. This runs in the background and
would generally only run once and would only require a re-analysis if there were
significant changes to the structure such as the addition or deletion of indexes, or
changes to the statistical makeup of a table like doubling the number of records.

Database Alerts
Since Table Analysis iterates over the table data inside the database to gather its
statistical data, it made sense to add some data and dictionary validation to this
process as well. Further, the Enterprise Manager now indicates the state of each
table with an icon next to the table name in the table list. The four states are:

40

atabase query performance
is always toward the top
of the list of priorities for
administrators and users of

data-driven applications. Tracking
down a performance related query
issue can be a time consuming and
often frustrating process, especially
when it involves only a small set of
particular database queries. Since
we at BASIS use all of our own
products for our in-house accounting
system, we often think of new ideas
for improving the BBj® database
in the areas of performance and
data validation and as a result, we
improved Table Analysis and the
Query Analysis tool.

Unlike other commercial RDBMS
databases that have an almost infinite
number of constraints on what and
how the data can be entered into the
database, the BASIS database comes
with a history of allowing developers
to have full programmatic control of
what and how they store their data.
This flexibility means that BASIS has
to offer extra functionality to help the
developers shape or enhance their
data and descriptions into a more
SQL friendly format to achieve optimal
access via both native and SQL

DBMS

 D

By Jeff Ash
Software Engineer

Quickly Fix Slow SQLQuickly Fix Slow SQL

Table analysis complete - no alerts.

Informational alert - something BBj-specific about the definition of the table,
i.e. how a particular index is limited in use for SQL optimization due to the
type of data in the field.

Warning - a possible problem depending on how the table is used, i.e.
a variable length character column defined with one length but contains
data longer than the defined length can cause problems when a third party
application accesses it.

Critical alert - a problem in the dictionary definition or the data in the table
does not match the definition in the dictionary.

http://www.audev.com/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

The Table Analysis performance
improvements cuts down on the
time necessary to analyze the
tables while the improvements to
the Query Analysis interface make
it easier for administrators and
developers to locate potential areas
for improvement in SQL query
performance by better indexing their
tables based on user usage of those
tables. If you are using Barista, our
data dictionary driven RAD tool that
makes heavy use of SQL, or you
are running any third party SQL
tools against your BASIS data, then
dramatic performance improvement
is just a click away!

Figure 1 shows the newly improved
Enterprise Manager interface which now
displays the status of each table with one
of the four icons, as well as an example
of a warning alert message. Note that
the alert also gives instructions on
resolving the issue.

Not only does the Enterprise Manager
display alert messages, but it can also
automatically fix certain types of alerts.
To see this in action, select the tables to
auto-fix and click the button at the
bottom of the window. This displays a
dialog with a list of the tables and alerts
that Enterprise Manager may be able
to fix automatically, depending on the
underlying issues.

Query Analysis
Query Analysis displays information
about the types of WHERE clauses used
in queries executed on the database to
aid administrators in improving indexing
of their tables. It displays the columns
included in the WHERE clause as well
as whether those columns are indexed
or partially indexed. The Query Analysis
interface in the Enterprise Manager also
has a new look, making it much easier
to locate potential performance issues
and then resolve those issues quickly
and easily.

Note the warning icon on the items
in Figure 2. The Column List column
shows the list of columns used in the
WHERE clause. Since the Optimizable
Index column is empty, this indicates
there is no index that utilizes that list
(or partial list) of columns. The Score
indicates the likely number of records
that the SQL engine would need to
iterate over to return a single value
matching the WHERE clause, while
the Record Count column shows the
total number of records in the file. The
Pct. column indicates the percentage
of the records in the file that would
likely be examined in order to return a
single value based on a query using the
displayed columns.

Figure 3 shows two other types of
icons. The green circle with check
mark indicates there is a primary or
unique key/index on the combination
of columns, which means it only needs
to iterate over a single record to return
a value for the query. The other icon, a
small grey bullet, indicates that there is
an index available for optimization and
using the value in the Score column

41

DBMS

in conjunction with the Record Count
allows the administrator to see the
optimization level of queries with this
combination of columns.

Summary
Performance of an application is very
important because it determines how
efficiently users can enter and retrieve
data, as well as contributing to the
overall user experience. Sometimes
BASIS can give customers improved
performance by refactoring or enhancing
our products. However, sometimes it
requires the developer or administrator
to make some changes to their database
structure to gain improvements.

Figure 3. Updated Query Analysis panel with additional status types

Figure 2. Updated Query Analysis panel with alert status

Figure 1. Example of the new Dictionary Alert

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

This article covers a few different ways BBj® developers can optimize their
application’s images to achieve quicker display times, make the most of limited
bandwidth, and deliver quality output.

Format
Choosing the best image format for the individual graphics is the foremost potential
optimization that developers often overlook. Various image formats, such as .png,
.jpg, and .gif, employ different compression algorithms that reduce the size of the
final image. These compression algorithms vary from format to format, and some
are more effective for certain image types. On the flip side, some algorithms do a
lousy job on images with certain characteristics, so determining the optimal format
can result in huge savings. Colors are one such characteristic. A photo with millions
of colors, for example, will usually compress the best using the .jpg image format.
On the other hand, a logo with just a few colors will probably compress best using
a .gif or .png format and won’t include unsightly compression artifacts that a .jpg
format could introduce.

File Size
By way of example, you saved a large photograph as a .gif that weighs in at 407 KB,
taking 5 seconds to download on a 1Mbps cable modem Internet connection. In
addition to taking a long time to download, .gif files are palette-based and reduce
the number of colors to a set of 256-fixed colors in a color table, which results in
a dithered image with reduced quality. In contrast, saving the image as a .jpg file
would result in a 104 KB file – almost one quarter of the size of the .gif image! Not
only will this file download much more quickly, but you have the ability to control the
level of compression to make a good compromise between image quality and file
size.

To drive the point home, saving the exact same image as a lossless 24-bit .png
image with alpha channel support (which will not even be used), would result in a
1.1MB file that takes 13 seconds to download! Selecting the optimum format for By Nick Decker

Engineering
Supervisor

Looks Better, Runs Faster
GUI and BUI Image Optimizations

 B

Language/Interpreter

42

BASIS went to great lengths
to optimize the launch time,
execution, and overall perform-
ance of the new BASIS Product

Suite Download page, discussed in The
Anatomy of a Web App Makeover: A
Case Study at links.basis.com/12webapp.
Another area for application optimization
that we explored while reviewing the new
BUI download page was that of image
optimization – one that developers too
often woefully ignore. Image optimization
is really ‘low-hanging fruit’ as it does not
take much time to review the graphics in
an app. Optimizing file sizes can lead to
big speed boosts when the app runs in
a high latency or tiered architecture. And
choosing the best tool for the job can also
ensure that images render in the best
quality possible.

http://links.basis.com/12webapp

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

the size and type of image is occasionally a trial and error process, but it has the
potential to yield huge rewards by dramatically reducing disk space and transfer
time.

Crushing
Here at BASIS, we capitalized on our knowledge of ‘crushing’ to further optimize our
BUI Mortgage demo when we changed the vertically-tiled background image from
a .jpg format to an 8-bit indexed .png format. We then used a third party utility like
pngcrush to strip out unnecessary metadata from the image and decreased the size of
the background image by 400% – from 7.6 KB to 1.9 KB. Running several .png toolbar
images used in other BASIS utilities also resulted in significant savings as shown in
Figure 1. The new, smaller images not only take up less storage space on the disk,
but more importantly, the smaller file size results in faster transfers from the server to
the client. Depending on the number of images used in an application, this can have a
measurable impact and reduce the application load time.

Language/Interpreter

43

Figure 1. Compressing the images used by the BASIS utilities saves time and space

Uniting Images for Network Optimization
Applications vary in the number of images they employ, but it is fairly common for
them to use dozens of images for menu items and toolbuttons when the application
is sufficiently complex. Sending these images over the wire to the client may seem
innocuous since they are usually less than 1 KB in size, but often times the number of
HTTP requests required to transfer the images to the client is the crucial aspect and
limiting factor. Reducing the number of HTTP requests is one of the foremost methods
webmasters use to speed up their websites, making pages load faster and minimizing
the effect of latency. Images are prime candidates for this form of optimization, as
combining multiple discrete images into a single image file slashes the number of
HTTP requests from dozens down to one. Webmasters normally rely on image maps
or CSS sprites to combine image files, and BBx® developers can reap the same
rewards by using an ImageList. ImageLists are typically used to set an image in a
TabControl or Grid, but you can use them with any control that offers a
setImage() method.

For example, we modified the Resource Bundle Editor to use an ImageList for the
menu item, toolbutton, and button images. The application previously used 28 distinct
image files, so with a little help from a CSS Sprite tool, we combined them into a single
image comprised of the concatenated images as shown in Figure 2.

Figure 2. The result of combining multiple images into a single ImageList

Analyzing a BUI instance of the
application in Chrome's Developer
Tools confirmed that the number of
HTTP requests dropped from 28 down
to just 1. Using the ImageList will not
only drastically reduce the amount of
communication between the client and
server, but the resultant ImageList file
will almost always compress more than
the individual images (due to factors
like discarding redundant header
information). Our example showed that
our changes not only eliminated dozens
of HTTP requests, but also reduced the
amount of data sent – from a combined
size of 27 KB for the 28 separate
images to just 10 KB for the ImageList.
Combining your application’s images
in this fashion optimizes network
performance, reduces the effect
of latency, and best of all, benefits
traditional thin client and BUI apps
alike.

CSS Image
Optimizations for BUI
If your BUI app uses multiple images
as part of its CSS styling, CSS Sprites
are the logical way to optimize them to
reduce HTTP requests. The webpage
css-tricks.com/css-sprites has a good
overview of sprites with an example
that shows how combining images into
a single sprite reduces the number of
HTTP requests from 10 down to 1 and
reduces the total size of the images
from 20.5 KB down to 13 KB. Even
better, as images sometimes download
on a ‘lazy’ or ‘as-needed’ basis, it is
far better aesthetically to use a single
image.

When the browser displays a control
defined with separate images for the
various states (normal, hovered, and
active), it loads each image the first
time it is needed. So loading the image
files for the hovered and active states
occurs when the user first interacts
with the control. This takes a fraction
of a second and the control flashes as
the original image is removed and the
new image loads and displays. When
using a single sprite image, the entire
image is loaded at the start and already
cached by the browser when it comes
time to show the other controls states
so the transition occurs instantly without
any visual disruption. Various free and
commercial sprite editors exist, making
this potentially time-consuming and
exacting task a piece of cake. Some
editors, such as the one shown in

https://www.poweredbybbj.com/apps/BUI-Mortgage
http://pmt.sourceforge.net/pngcrush/
http://links.basis.com/rbe
https://developers.google.com/chrome-developer-tools/docs/overview
http://css-tricks.com/css-sprites/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Optimizing for Retina Displays
“Can BUI apps take advantage of one of the new ‘Retina Displays’?” is a question that has started to pop up more
frequently lately. With the initial release of the iPhone 4, and with the recent releases of the latest iPad and MacBook
Pros, Apple has been touting their Retina Displays. The idea is that these devices utilize high pixel density, meaning
that they pack a huge amount of pixels into the device’s screen. The result is a pixel density of more than 300 pixels per
inch, even better than some of the early laser printers. The pixels are so small that they cannot be individually discerned
when holding the device at a reasonable reading distance, meaning that text and graphics are ultra-sharp. Many
Android-based phones also utilize high pixel density and their screen support API covers devices with various pixel
densities and defines concepts such as density independence.

So what does this all mean to BBj BUI programmers – are their apps going to be able to play in the high-resolution
game? The answer is a resounding “Yes!” and in most cases, programmers will not have to do anything special or make
any code changes. Our aforementioned BUI Mortgage demo
serves as a good example of this as seen in Figure 4, which
displays a small section of the app running on the new iPad
with its whopping 2048x1536 pixel screen resolution.

The titles, labels, and input controls are all razor-sharp and
match the high-resolution native iPad apps because most
BBjControls and text fall into the ‘vector’ category. Vector
means that they can scale well without degrading in quality.
However, developer supplied images used in custom CSS
fall into the ‘raster’ category, which means that they degrade
dramatically when enlarged.

Figure 3, not only take care of combining images and optimizing layout, but also write all of the CSS code for you!

Language/Interpreter

44

Figure 3. A sprite editor that combines images and writes the supporting CSS code

Figure 4. High resolution BUI app running on a Retina Display iPad

http://developer.android.com/guide/practices/screens_support.html
https://www.poweredbybbj.com/apps/BUI-Mortgage

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Optimizing BUI CSS Images for Retina Displays
Optimizing custom images for a high pixel density display is
possible given CSS’ media query capability. The CSS in
Figure 5 specifies a background image (my-image.png) for
regular displays. But when the client browser is using a pixel-
doubled display such as the iPhone or iPad, a different image
(my-image@2x.png) is used instead. This version of the image has
four times the resolution, twice as many pixels in both the X and Y
direction.

Figure 5. Defining regular and high-resolution images for Retina Displays

The @media portion of the CSS file allows developers to specify
selectors that the client browser will use when viewed on a
computer or mobile device with a pixel-doubled screen. The
redefinition of .my-selector with the high-resolution image will
take precedence over the initial definition due to CSS’ cascading
order. Because they both have the same weight, origin, and
specificity, the last definition ‘wins’ and is the one that the browser
will use. The final trick involves setting the background-size
property for the selector to the same 200x100 pixels specified in
the original definition. In essence, we are directing the browser to
display the pixel-doubled image to our ‘preferred’ size of 200x100
pixels. If we omitted the background-size property, the image
would display twice as wide and tall as the normal resolution
image. By specifying the background-size property, we force it
to use the native display pixels to squeeze it into the same screen
real estate.

We used this same technique for the BUI Tip Calculator demo
targeted for the iPhone. The app uses a custom image defined
in a CSS file to display an interactive service rating as a series
of stars. Simply tap on a star to define the level of service you
received and the tip adjusts automatically. The “How was the
service?” label is a BBjStaticText control, so it looks perfect on

a pixel-doubled display without any extra work on our part.
However, because the image used for the star rating system
was defined as a regular image in a custom CSS file, it
did not scale well and appeared blurry when viewed on the
iPhone 4 and above, as shown in Figure 6.

Language/Interpreter

45

• Try out these BUI demos
 • Mortgage Amortization Schedule at links.basis.com/buimortgage
 • Tip Calculator at links.basis.com/buitip
 • More at links.basis.com/buidemos
• For a more in-depth discussion of image formats and criteria to help determine the best
 image formats, review Image File Formats at en.wikipedia.org/wiki/Image_formats
• Check out these tools
 • Pngcrush at bit.ly/4uyudU
 • Chrome Developer Tools at bit.ly/HNgdC0
 • Android Screen Support at bit.ly/mithf

Figure 6. Comparing the non-optimized image (top) and retina-optimized
image (bottom)

To make the application look great on the Retina Display
iPhones, we created a version of the star image that was pixel-
doubled – twice as many pixels for both the width and the
height. This ensures that the image used for the rating system
will be of the highest quality for every device.

Summary
As computer applications have matured and migrated from
CUI to GUI and now to BUI, images have become an integral
part of most of these applications. In addition to adding
aesthetic value, when used wisely they improve usability and
provide interactive feedback. Despite their importance, they
are sometimes treated as an afterthought and even though
developers typically profile their application for performance,
they may overlook the importance of optimizing their
application images as well.

Taking the time to analyze and compress images is an
important opportunity to improve the launch speed of an
application while preserving image quality. Fortunately,
optimizing images is fairly easy and quick, especially with
some of the advanced compression tools available. You can
now accomplish this task yourself instead of delegating it to
a dedicated graphic artist. BUI applications look great out-of-
the-box on the new Retina and pixel-doubled displays without
resorting to custom code. If your BUI app happens to utilize
images in a custom CSS app, with a little CSS kung fu, you
can make image degradation a distant memory and produce a
fantastic looking app!

https://www.poweredbybbj.com/apps/BUI-Tip-Calculator
http://links.basis.com/buimortgage
http://links.basis.com/buitip
http://links.basis.com/buidemos
http://en.wikipedia.org/wiki/Image_formats
http://bit.ly/HNgdC0
http://bit.ly/4uyudU
http://bit.ly/mithf

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Stateless services require all the information about a request up front. Providing
partial information will not return a valid reply so each request sends whatever the
server might need in order to get a valid reply. The bank itself is stateful. They, of
course, need to remember all of their customers and balances. Each request to the
bank is a self-contained package, requiring no extra state. Statelessness simplifies
the client and server code greatly. In fact, it’s so simple we can use HTTP instead of
writing our own SOAP-like system.

How, exactly, is information sent to the web server? A web browser uses HTTP to
talk to a web server. Every click of a link on a web page sends an HTTP request to
the server and returns an HTTP response back to the client. The protocol is a little bit
too complicated to just type into a telnet session, but it is not nearly as hard as the
alphabet soup of WSDL services. There are four key HTTP methods used in REST-
based WS: GET, PUT, DELETE, and POST.

Jason: “Excuse me, ma’am, what is my balance?”
Teller: “I’m sorry, sir, for what account?”
Jason: “Of course. What is the balance of account 1234?”
Teller: “I’m sorry, who is the account holder for account 1234?”
Jason: “What is the balance of account 1234 held by Jason?”
Teller: “I’m sorry, what is the password for account 1234 held by Jason?”
Jason: “What is the balance of account 1234 held by Jason with password GetItAlready”	
Teller: “The balance is 37 cents.”

protocol, Hypertext Transfer Protocol (HTTP), simplifies WS even more. Statelessness
and HTTP let us take advantage of many existing tools. The whole spectrum of
Internet infrastructure helps us implement REST-based WS. From Java libraries that
provide valid HTTP sessions to caching web proxies, all of the infrastructure on the
Web works for us.

What exactly is a stateless protocol? Imagine a stateless bank teller. A conversation
might go something like this:

Development Tools

 I

46

By Jason Foutz
Software Programmer

n today’s world, we see Web
Services (WS) in action
everywhere from online shopping
and shipping trackers to mapping

and geolocation tools. The methods
used to create WS are just as broad
and varied as the tools that use WS.
However, some of the protocols defined
by the WS- documents seem to exist
only for Oracle to sell consulting
contracts. One can easily drown in the
alphabet soup of UDDI, WSDL, and
SOAP. Learning SOAP (Simple Object
Access Protocol) reveals there is nothing
simple about it. Add to that the fact that
Java and .net are incompatible in subtle
ways, which creates extra complexity.
REpresentational State Transfer (REST)
eliminates much of the formality imposed
by a WSDL-style WS.

How does REST avoid complexity? First,
REST is stateless. Statelessness alone
won’t make WS simple. But, leveraging
the Internet’s most popular stateless

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

This type of transaction cannot be changed or removed so there is no need to
implement PUT or DELETE.

A REST-based WS can be consumed with the http-commons library. Code for
processing a request might look like this:

REST services requires only HTTP from their clients. This makes it exceptionally
easy to consume services from many different languages. BBj and Java, as we
saw, may use the http-commons library. C# ships with an HttpClient class right in
the .net runtime. While PHP has nothing built in, many third party http client libraries
are available. HTTP is so widely used, command line libraries such as curl or wget
could be used from any language’s version of SCALL. C programmers might do an
exec of curl to retrieve their WS results. Libraries for interacting as an HTTP client
are widespread, virtually every platform and language can call a WS.

Summary
While WS provide unlimited complications, REST WS limit that complexity in two
key ways. REST is stateless, requiring clients to provide all the information a server
might need for every request. REST leverages HTTP, simplifying the stateless
communication to the server. REST is a powerful tool for deploying WS without the
risk of drowning in alphabet soup. So rest easy, Keep It Simple and Stateless, and
‘KISS’ WSDL goodbye!

BBj Servlet Overview in the BASIS online docs at links.basis.com/servlet covers
creating and handling HTTP requests using BBj Services. In the following examples,
getMethod is the workhorse for determining what kind of request the user makes. A
lot more functionality is available in BBjHttpRequest and BBjHttpResponse in the online
help at links.basis.com/basishelp.

When the server receives an HTTP request, the getMethod() determines which HTTP
method the client used. You can implement each method GET, PUT, DELETE or POST
to handle the client’s requests. Since not every WS requires every method, just omit
unnecessary methods. Clients must provide all the information possibly needed up
front because HTTP is stateless.

Code for transaction processing might look something like this:

Every query asked of our fictional
bank teller was a GET request.
Requesting balance information GETs
information about the bank account, a
specific resource. In SQL, a SELECT
statement is like the GET request.
GET requests are made visible on
many websites. At www.google.com,
searching for something adds on
many parameters about the request. It
might look something like www.google.
com/search?query=something. The
parameters vary depending on the exact
query, but the arguments display inside
the address bar of the browser.

A PUT request replaces existing state
on the server. Our fictional bank teller
would be able to change a password
with a valid PUT request. A PUT request
is similar to the SQL UPDATE statement.
Furthermore, PUT requests should
be idempotent. Whether using PUT to
change the password to “hello” once
or 100 times, the password should be
“hello” after every request. Intentionally,
or accidentally, sending the request
multiple times shall have no effect.

A DELETE request does just what it
sounds like it does. DELETE removes
state from the server. HTTP DELETE
works like an SQL DELETE statement.
Because it changes state, DELETE
should also be idempotent. For example,
deleting a specific account multiple times
has no effect, no additional accounts are
deleted.

The final HTTP method, POST, creates
resources. POST is similar to the
SQL INSERT statement. Every POST,
creates a new resource, so it can not be
idempotent. Depositing a dollar into an
account POSTs that dollar to the teller.
Every single dollar deposited has an
effect, to create a resource on the server.

So how would we actually implement a
REST Web Service? The BBj® Servlet
API provides full access to HTTP. This
introduction just scratches the surface
of what is possible with BBjServlet. The

47

• Review getMethod in the online BASIS documentation at links.basis.com/getmethod
• See also
 • Detailed examples of using the Java library at bit.ly/euhVG
 • Sample API of accessing another’s Web services at bit.ly/JIywat
 • Vast list of REST Web Services at bit.ly/9XXsrF

Development Tools

https://www.google.com/
https://www.google.com/search?query=something
http://links.basis.com/servlet
http://links.basis.com/basishelp
http://links.basis.com/getmethod
http://links.basis.com/getmethod
http://bit.ly/9XXsrF
http://bit.ly/JIywat
http://bit.ly/euhVG

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc48

Dr. Kevin W. King
President & CIO

BASIS Survived the Amazon Outage
ith all of the hype that is swirling
around the cloud these days,
one tends to forget that cloud
deployments suffer from many

of the same risks as the server rooms
that we are familiar with, and that many
of us have to manage each day. While it
is true that with all of the backup power
supplies and forty odd thousand servers
in each facility, power outages are
seldom and there is even less chance
that another server is not available
any time you need it. However, there
is still that slight risk that something
catastrophic can occur that will make the
entire region come to a screeching halt!

As it turns out, this risk turned into a
reality twice on the East Coast since
BASIS moved their servers into the
cloud. The first time, we had lulled
ourselves into a false sense of security
that often comes with your first cloud
deployment, so we were offline for
several hours like the majority of the
Amazon customers in the region. Once
the cloud came back online, BASIS
implemented the necessary features to
prevent such a calamity from happening
again. Fortunately, it was not a difficult
challenge to solve. With a small change
to the configuration and a few cents
more per hour, we enabled the Multi-AZ

 W
RDS system for www.basis.com and
www.addonsoftware.com thinking that
we would probably never need it, but we
wanted to be safe.

A little more than a year later, the East
Coast region failed again and numerous
big name online businesses were down
again; several companies suffered
enough losses that they left Amazon
entirely. Fortunately, neither BASIS nor
AddonSoftware® suffered an outage at
all. Even though our primary availability
zone failed, the secondary zone took
over automatically and without a hitch.
This experience made us a firm believer
of the benefits of the Multi-AZ service:

“In the event of planned database
maintenance, DB Instance failure, or
an Availability Zone failure, Amazon
RDS will automatically failover to the
up-to-date standby so that database
operations can resume quickly without
administrative intervention.” Amazon
Web Services, amzn.to/RDVowj

In addition to keeping our websites
up 100% of the time, we also want to
keep our BUI demos and BUI-powered
b-commerce® and product download
pages functioning 24/7 as efficiently
and as effectively as possible. To this
end, we utilized a different feature that
Amazon offers, Route 53 DNS Web
Service (aws.amazon.com/route53).
While this DNS works like almost any
other DNS, it gives us some features
that other DNS systems do not. First, it
allows us to reduce the time-to-live (TTL)
down to only 5 minutes from the usual
minimum of 30 minutes. The result is that

our failover from one server to another,
or one region to another, will be less
than 5 minutes of dead air, no matter
how catastrophic the failure is. Another
significant reason we use Route 53 DNS
for www.poweredbybbj.com is to employ
their lowest latency-based routing to
provide geo-aware DNS service to our
customers worldwide. Now Route 53 will
silently direct customers to the lowest
latency server in their region, in Europe
they are routed to Ireland, US East Coast
customers are routed to Virginia and
US West Coast customers are routed to
California or Oregon. Using the BASIS
BBj® replication service to replicate the
programs, configuration, and data to all
of these machines means that we can
deliver optimal performance around the
world without adding to our process
management overhead. We still just
maintain the same single source machine
and replication keeps all of the target
machines up-to-date without any human
intervention.

In order for BASIS to continue with Nico’s
“belt and braces” redundancy desire (aka
“belt and suspenders” in my part of the
world), we utilize the new scheduling
feature in Enterprise Manager (EM)
to pause the replication in the middle
of the night, just long enough to run a
traditional incremental backup to an
Amazon storage bucket. Then we use
another EM-scheduled task to rsync
the production Amazon drive to another
Amazon drive, giving BASIS two backups
in addition to the replicated databases.
Therefore, if a catastrophic failure ever
occurs in one or more regions, we have
replicated databases that we can fail

http://www.basis.com/
https://www.poweredbybbj.com/
http://www.addonsoftware.com/
http://aws.amazon.com/rds/mysql/#Multi-AZ
http://aws.amazon.com/route53/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

over onto, which are located on three different
continents in less than five minutes. We still have
the traditional midnight backups, should we ever
need them, like our braces or suspenders. The
combinations of configurations that are possible
using the latest BBj toolset is almost endless. We
are confident that one or more of these options
will benefit all of your needs.

Finally, you might ask, “How can anyone afford
all of this hardware in all of these locations,
even if the human maintenance cost does not
increase?” Well, Moore’s law and market forces
continue to drive costs down and technology
up. The Amazon price of all of our replication
servers have dropped to 1/6th of the on-demand
servers, so we run replication servers in all
of our high density customer regions for only
1-3 cents per hour and the storage price is
calculated at pennies per GB per month. In
order to keep our human costs low and our
reliability high, we have put all of our replication,
archive, test, build, and demo machines on
spot instances, mostly controlled by Amazon
Auto Scalers (aws.amazon.com/autoscaling). In
response to trouble that might arise in any region,
a new instance comes up in a different region
and the removal of the DNS entry in Route 53 for
the dying machine occurs automatically, so that
BASIS customers do not experience a break in
service and BASIS employees don’t experience
a break in their slumber.

While BASIS benefits from all of these cloud
features, you might wonder how all of this
benefits you, beyond having your language
provider always accessible and online. Well,
not only does having your language provider
soaring high in the cloud give you a sense of
comfort and security in that BASIS is prepared
to handle calamities of any nature, it also gives
you confidence that the language has built-
in features and the capacity for you and your
customers to move into the cloud infrastructure.
Utilizing all of these features, we are able to add
scalability, redundancy, and rapid recoverability
for our AddonSoftware application in the cloud
called AddonSoftware Cloud Service, or Addon
Cloud for short. Utilizing Amazon’s AutoScaler
and Route 53 DNS along with BASIS’ Data
Replication and Scheduler, the Addon Cloud
offering delivers geo-aware DNS for reduced
latency, automatic server redundancy/
replacement, and rapid recovery or failover
functionality for any regional cloud interruptions.
If you are looking for a robust affordable ERP
solution, you would be hard pressed to find
one that is more architecturally reliable and
redundant than the Addon Cloud solution.

For more information, see Are
You Prepared for Cloud Failure?
at links.basis.com/12cloud

49

http://links.basis.com/12cloud
http://aws.amazon.com/autoscaling/
http://en.wikipedia.org/wiki/Moore's_law
http://www.3dtek.com

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

oon after BASIS introduced the Barista® Application
Framework to the BASIS product suite, ASCI of Miami
was quick to recognize the benefits of implementing
the RAD tool’s built-in feature-function into their own

solution, and getting SQL access to their data. Enabling ASCI
to add powerful features beneficial to their end-users that ASCI
did not have to develop made this an easy decision. With a
broad offering of applications for their vertical market, ASCI
strategically planned to implement their application migration in
two phases.

Phase 1
In the first phase, ASCI introduced improved navigation (see
Figure 1) through an all-new multiple document interface (MDI)
with enhanced search/sort capability, new report output options,
tables/forms creation, and role-based security with an audit
trail – all built-in features of Barista. More specifically, users
immediately enjoyed these significant time savers and new
security measures:

50

By Susan Darling
Technical/Marketing Writer

 S

Navigate through the more user-friendly and structured
menus of Barista, providing a more modern and easier,
more consistent, user experience within the programs.

Open multiple windows simultaneously using the new
MDI, allowing quick and efficient navigation through several
open ASCI windows and in so doing, increase productivity.

Search and sort by any field in an inquiry window or
create custom inquiries, giving the user access to the data
that empowers them to make informed business decisions.

Output reports in PDF, XML, XLS, HTML, CSV and
Google doc formats, equipping users with the ability
to create their own reports and provide them the ability
to archive the reports in the format that best suits their
needs – otherwise only available from expensive third party
packages.

Have tables and forms created for them with the
desired look-and-feel, allowing customization “just the way
you like it.”

Implement role-based security with an audit trail,
right down to the field level, offering security and the
confidence that only authorized users can make changes
with an automatic record of the database changes.

ASCI Partakes
RADically
From the

Barista Cup

ASCI Partakes
RADically
From the

Barista Cup

As of this writing, ASCI has already completed the first few
Phase 1 installations of ASCI - Powered by Barista (Figure 2)
and is receiving very positive feedback. ASCI Programming
Manager Alex Castellanos says,

Partnership

“We are confident that Barista will meet our technology
requirements to allow us to meet our customer needs
well into the future. We love how the user interface works
and the way Barista moves...it is very fast. We are glad
we made this move and are anxious to upgrade all our
customers to the new ASCI - Powered by Barista solution.”

•

•

•

•

•

•

Phase 2
In this next phase, currently in process, ASCI is extending the
Phase 1 features across all their remaining ASCI modules
including Export Procedures, Warehouse Procedures, AMS,
and Accounting. ASCI has committed several programmers
as well as Quality Control personnel to this project and are
making great progress in the conversion. In addition, ASCI is
converting their Data Entry programs to take full advantage of
Barista. Barista provides ASCI the ability to develop their user
interfaces much more quickly and efficiently.

Since ASCI can now more quickly customize and enhance
their customers’ programs, ASCI can provide better, faster, and
more affordable customer service.

Castellanos describes their experience learning Barista,

“We did not find the learning curve so difficult. Most of our
staff had experience working with this kind of development
tool. Also, the online training sections and online tutorials
helped us to get familiar with the basics of Barista.”

Castellanos sees many benefits that will carry them far into the future.

“I see many things that will result in a better product for our
clients...rapid software development, standard programming
routines and callpoints, and how easy it is to create new
forms and applications, and to organize and maintain our
database system.”

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 51

Figure 1. The main menu before (left) and after (right) in the new ASCI - Powered by Barista

Figure 2. Billing in the new ASCI - Powered by Barista

Partnership

ASCI of Miami (www.asciofmiami.com) is a developer and distributor of a complete software
solution for U.S. Customs brokers, importers, freight forwarders, and other parties involved in
cross-border trade. ASCI is aggressively adopting BASIS’ best-of-breed technology to catapult
their customers onto their newest state-of-the-art solution.
Integrating new features into their original Visual PRO/5®
architected software solution, ASCI is taking a giant leap
forward. Over 300 satisfied customers currently run the
ASCI Software System across the U.S. and in Puerto Rico.

The synergism of the technology
and expertise at ASCI and BASIS
is both solid and future-proof. The
ever-changing technology landscape
presents ongoing challenges and
opportunities with such advances
as the cloud and mobile computing.
Barista and the underlying language –
Java-powered BBj® – deliver a broad
eco-system for deployment on a
variety of popular operating systems
and browsers. Barista applications
run on a multitude of platforms and
operating systems; equally well with a
single operating system or with a mix
of Microsoft Windows, Linux/UNIX,
and Mac OS/X. These technology
components serve as the foundation for
modern business application solutions,
fully cloud-enabled and mobile capable,
all from a single code base in the Java-
made-simple world of BBj.

The future for ASCI is secure and bright.
Follow their example and RADically
change your GUI application with
Barista’s out-the-box new features and
functions. More than just a RAD tool,
Barista’s framework delivers building
block components built into the product.

http://www.asciofmiami.com/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Henry, a developer on the East Coast of the United States, soon got his GUI program running on the cloud server in BUI.
Anyone in the world could now navigate to the company page and browse the online database of new cars! His program
offered 360° exterior, and interior views of each automobile, allowing the user to choose colors, upholstery, different
spoilers, wheels, and other customizations. Customers could build the auto of their dreams, submit it to the dealer,

negotiate the price, and have it delivered without ever setting foot in the showroom, all online for any of the dealer’s worldwide
locations.

But, there were already problems. Henry got reports that the program took two seconds to load for customers in North America,
ten seconds to load in Europe, and fifteen seconds to load in Asia. Fifteen seconds is a long time to wait for a page to load. But
wasn’t this to be expected? After all, his server was in the US; the further away a customer is from the server, the longer the
program takes to load.

Henry thought, “Surely, there’s a way around this,” and actually, there is!

 BUI, GUI Everywhere
Worldwide Equal Opportunity Access With Distributed BUI Apps

The solution to providing consistently quick access to a BUI
app anywhere in the world is to set it up as a distributed
application using readily available tools from BASIS and
Amazon. While Amazon offers tools for reaching multiple
machines with the same address, BBj® offers tools for
replicating programs and data across several machines.
In this article, we will discuss Amazon geo-aware DNS
(Domain Name System) addresses, and BBj File/Directory-
Database Replication, and how they can be combined to
make Henry’s auto sales application run equally well and
transparently from anywhere in the world.

The Primary Tools
The two major tools for creating a distributed BUI
application are Amazon’s geo-aware DNS addresses
and BBj File/Directory-Database Replication. Geo-aware
DNS addresses allow one DNS to correlate to several IP
addresses, where each address is located in a different
region. BBj Replication maintains up-to-the-minute copies
of programs and data between machines in all of the
regions. Let’s take a more detailed look at these tools.

By Shaun Haney
Quality Assurance
Engineer

52

 H

System Administration

Geo-aware DNS Addresses
One major feature of cloud computing is being able to provide
content to users from a server close to them. In the past, you might
provide North American users a .com address, British customers a
.co.uk address, and German customers a .de address, etc. It would
be great if your customers did not need to know what address was
near them and you could just use the same web site address all
over the world. Geo-aware addresses provide exactly this. Using
Amazon’s Route 53 configuration tool, you can specify a single
DNS name, assign it an IP address, and then specify a region of the
world where the DNS belongs. To add more locations, simply add
more DNS records with IP addresses and specify a different region
for each address. For example, North American customers will go
to the IP address of a server on the East Coast or West Coast,
while European customers will go to an address in Ireland, South
American customers will go to a server in Sao Paulo, and Asian
customers will go to an address in Japan. All of those customers
will type the same website name in the address bar of their web
browser and Amazon will reroute them to the correct machine
behind the scenes, without the customer having to do anything.

BBj Replication
BBj replication is invaluable anywhere redundancy is needed.
Replicated data is not only a quickly available up-to-the minute
backup, but is also a read-only copy of the original data accessible
in real time. BBj replication is not just for databases, but for any file
that needs a copy maintained on one or more remote machine(s).
Replicated BBj programs can run on the replication target machine,
but any changes to the programs should be made only on the
source machine.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 53

System Administration

Read Are You Prepared for Cloud Failure? at
links.basis.com/12cloud

Supplementary Tools
Other important tools include AWS EC2 (Amazon Web
Services Elastic Compute Cloud) and BBj databases and files.
Amazon’s EC2 framework is what allows Cloud developers and
administrators to create, configure, upgrade, start, and stop
cloud machines. A complete discussion of EC2 is beyond the
scope of this article, but the reader should be aware that EC2 is
the underlying framework for running cloud servers.

BBj databases and files are also critical to any non-trivial BUI
application. Rather than discussing data structures in any
detail, it is more important to know that an application’s data
will replicate along with its source files, and that the “genuine”
data will reside on the source machine while a read-only
copy will reside on each target machine. The BUI application
design should include two connections for each set of data: a
“read” connection that accesses the local data and a “write”
connection for the “genuine” source data.

The Architecture
Now that Henry knows a distributed BUI application is
possible and what tools he needs for the process, what does
a distributed BUI application’s configuration look like?

A distributed BUI application consists of one source server
and any number of target servers such as shown in Figure 1.
The source server and target servers all have an install of
BBj, the BUI application source code, and the application’s
data. Each server has a permanent IP address. All of the
IP addresses are associated with a single geo-aware DNS
Name. On each machine, the BUI application is identical
and has two connections for each dataset used: a read

connection and a write connection. The read connection goes
to localhost so that reads occur on the local copy of the data.
The write dataset connection goes to an unpublished name
for the source server so that all writes are on the source’s
copy of the data. Meanwhile, replication maintains up-to-the-
minute copies of the data, BUI source files, and any relevant
configuration files on all of the target machines. In a distributed
BUI application configuration, if one makes changes to data,
source code, or the application configuration on the source
server, replication automatically propagates those changes to
the target machines.

After planning the architecture, Henry put his nose to the
grindstone. In the course of a week, he sets up servers in
California, Virginia, Ireland, Brazil, and Singapore. He chose
Virginia for his source server because, even though the source
server could be anywhere, it made the most sense to have it in
the same region as those in his company who will maintain it.

Now with servers in so many regions, Henry knows that
customers will have faster load times for his BUI car sales
application and as a huge bonus, he now has several redundant
copies of his application and data in case of a failure.

How it Works
With so many servers relatively close to almost any customer in
the world and application load times much faster, how exactly
does using the BUI application work? Recall that Henry’s main
server is in Virginia.

While Henry is fast asleep in the U.S., Ivan, a customer in
Romania, decides it's time to buy a new car. Ivan simply types
www.henrys-car-sales.com into his favorite browser's address
bar – the exact same address any other customer in the world
would type – to connect him to the closest server, which is in
Ireland. Ivan browses for cars and then chooses the color, seat
fabric, and window tinting, all from the server in Ireland. After
perfecting his future vehicle, Ivan saves his customization and
offers a price to start the negotiation process.

Ivan’s car customizations and initial bid transmit to the interpreter
that is running the BUI application in Ireland. The BUI
application’s write connection in Ireland then redirects Ivan’s
data to the primary database in Virginia. As the database in
Virginia updates, the updated records replicate back to the
local copy of the database on the machine in Ireland. Because
the process only takes a couple of minutes, Ivan will be able
to review his order with all the details displayed directly from
Ireland’s local database.

The More BUIs the Merrier
Amazon’s geo-aware DNS addresses and BASIS’ replication
feature come together to allow BUI applications to perform
quickly, no matter where in the world the user runs them.
The best part is that with replication, most of the application
maintenance occurs on the source and propagates to the target
machines.

After Henry setup the other servers and the replication jobs,
he still only has to maintain and update a single server. All the
other servers are maintained automatically. So, while this adds
some time to the initial deployment, after it's up and running
Henry doesn't have to do any more work to get updates to all
the servers than he does to a single server.

The result is a distribution of a BUI application that is completely
transparent to customers around the world. For all they know, it
is running on a single server in their own backyard!

Figure 1. Sample configuration of a distributed BUI application

http://links.basis.com/12toc
http://links.basis.com/12cloud

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

uilt-in stored procedures now provide SQL access to BASIS data files or CSV files with the familiar SQL ‘CALL’
syntax and forgo the typical prerequisite of a BASIS data dictionary or the need to write SQL syntax. Any SQL-
enabled application can now access BASIS data files using this new functionality. Built-in SPROCs are an integral
part of the BASIS RDBMS; the built-in BBJSYS database provides access to the new built-in SPROCs. The SQL

‘CALL’ syntax accesses built-in SPROCs through the BBJSYS or any other database.

Introducing the new SPROCs
These new built-in SPROCs, available in BBj® 12 and above, are always available and called from a connection to any
available BBj database. If there is no database defined within BBj Services, use the system database to execute the stored
procedure. The ‘BBJSYS’ database (built-in system database supplied with BBj Services) will execute the stored procedure
without any need for a data dictionary.

BBj or third party applications can use the BBj ODBC Driver® or JDBC Driver to access the built-in SPROCs via the BBJSYS
database. Here is a sample JDBC connection URL to the BBJSYS database:

jdbc:basis:localhost?DATABASE=BBJSYS&SSL=false&USER=admin&PASSWORD=admin123

Understanding how new SPROCs Work
Built-in stored procedures make use of a user-supplied file location and record template as parameters to the SQL CALL
statement to return a result set based on the data from the file. The SQL syntax for use with the built-in stored procedure
looks like this:

GET_RESULT_SET (file_path, template)

“File_path” is the path to the data file you wish to reference and “template” is the string template that describes the structure
of the file.

Using the new SPROCs
The following simple example retrieves information from the ChileCompany’s CUSTOMER file (an MKEYED file) located in
the <BBjHome>\demos\chiledd\data directory:

CALL GET_RESULT_SET
('C:/Program Files/basis/demos/chiledd/data/customer','CUST_NUM:C(6),FIRST_NAME:C(20),LAST NAME:C(30),
COMPANY:C(30),BILL_ADDR1:C(30),BILL_ADDR2:C(30),CITY:C(20),STATE:C(2),COUNTRY:C(20),POST_CODE:C(12)')

 B

Built-in
SQL Access to

BASIS Keyed and CSV Files

By Robert Del Prete
Quality Assurance
Engineer

DBMS

54

Built-in
SQL Access to

BASIS Keyed and CSV Files

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Executing this SQL statement in Enterprise Manager returns the data from the CUSTOMER file as an SQL result
set, as shown in Figure 1.

Figure 1. The built-in SPROC via SQL in Enterprise Manager

The call in Figure 1 to the GET_RESULT_SET SPROC returns the first ten fields, as defined by the provided
string template, from all records within the CUSTOMER file. This is extremely helpful when a data dictionary is not
available for the data file. Utilizing iReport together with the built-in GET_RESULT_SET SPROC allows developers
to provide stunning reports without the overhead of creating a data dictionary or writing SQL syntax for their
customers’ traditional file system-based data.

Understanding Advanced Data Manipulation
BASIS’ SPROCs are very versatile and developers can utilize the SQL language to treat a SPROC’s result set as a
table to join, group, filter, and order the returned data. SQL clauses such as WHERE, ORDER BY and JOIN allow
programmers to maximize their control over the returned data to suit the needs of the application and end users.

The example in Figure 2 uses the GET_RESULT_SET stored procedure to pull data from two different files. The
statement joins the results of two CALLs to GET_RESULT_SET SPROC, utilizing the WHERE clause to match the
account numbers in the two tables. It then uses a GROUP BY to group the returned data by ACCOUNT_NUM and
DESC, finally ordering the result set by account number.

SELECT
 GLMAST.ACCOUNT_NUM, GLMAST.DESC,COUNT(GLMAST.ACCOUNT_NUM) AS "ENTRIES",
 STR(SUM(GLJOURN_DET.AMOUNT),'$#,###,###.00') AS "Balance"
FROM
 (CALL GET_RESULT_SET
 ('c:/Program Files/basis/demos/chiledd/data/GLMAST',
 'ACCOUNT_NUM:C(6),DESC:C(35):')) as GLMAST,
 (CALL GET_RESULT_SET
 ('c:/Program Files/basis/demos/chiledd/data/GLJOURN_DET',
 'JOURNAL_NUM:C(6),LINE_NUM:C(4),ACCOUNT_NUM:C(6),MEMO:C(30),AMOUNT:N(10)'
)
) AS GLJOURN_DET
WHERE
 GLMAST.ACCOUNT_NUM = GLJOURN_DET.ACCOUNT_NUM
GROUP BY
 GLMAST.ACCOUNT_NUM, GLMAST.DESC
ORDER BY
 GLMAST.ACCOUNT_NUM

DBMS

55

Figure 2. Advanced SQL query utilizing the built-in SPROC to pull data from two files

http://community.jaspersoft.com/project/ireport-designer

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

DBMS

56

This SQL statement returns the account numbers in ascending order along with the description for each account, the number of
entries, and the current balance on the account without the use of a data dictionary, as shown in Figure 3.

Figure 3. SQL using the built-in SPROC in Enterprise Manager

Retrieving Data From a CSV File
A second type of built-in SPROC is also available for returning data from a standard CSV (comma-separated values) file
using this syntax:

GET_RESULT_SET_CSV (file_path, template, delimiter)

As with the previous built-in SPROC, the file_path parameter denotes a fully qualified path to the CSV file. The template used for
a CSV file simply describes the fields for each row and the delimiter determines the separator between each row of data in the
text file. The SPROC expects the actual bytes of the delimiter rather than a string representation of the characters. In the case of
a linefeed, a CHAR(10) would be specified in the SQL statement instead of the common ‘\n’ string representation of the newline
character. The same sorting and filtering capabilities are available to this SPROC as well. Consider the following CSV file format:

	 Baroque,George,Fredric,Handel,1685,1759
	 Classical,Joseph,,Haydn,1732,1809
	 Romantic,Carl,Maria,von Weber,1786,1826

Creating the SQL statement to access data in the CSV text file via the SPROC is easy. Insert the file path and create the string
template by following the format of the CSV file. Include the delimiter for the records, in this case a line feed represented by
CHAR(10). Filter the composers using MUSIC_TYPE and exclude any born after 1800. Lastly, group the results according to
the composer’s last name. The SQL statement code in Figure 4 uses the built-in SPROC for a CSV file, selects all of the fields,
sorts by music type and birth date, and then orders by the last name.

 SELECT
 MUSIC_TYPE,FIRST_NAME,MIDDLE_NAME,
 LAST_NAME,BIRTH_DATE,DEATH_DATE
FROM
 (CALL GET_RESULT_SET_CSV
 ('c:\users\data\desktop\composers.csv',
 'MUSIC_TYPE:C(10*),FIRST_NAME:C(10*),MIDDLE_NAME:C(10*),'+
 'LAST_NAME:C(10*),BIRTH_DATE:I(4),DEATH_DATE:I(4)',
 CHAR(10)
)
) AS COMPOSERS
WHERE
 MUSIC_TYPE='Classical' AND BIRTH_DATE < '1800'
GROUP BY
 LAST_NAME

Figure 4. Sample of SQL using the built-in SPROC for a CSV file

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Figure 5. SQL using the built-in GET_RESULT_SET_CSV SPROC

Summary
The new built-in SPROCs allow access to any BASIS or CSV formatted data files regardless of the presence of a data dictionary.
Developers can leverage this new feature in many ways, supplying new access to data by end users. Being able to filter and sort
the data using SQL syntax also provides additional flexibility for the distribution and presentation of that data.

The result of the code sample appears in Figure 5.

DBMS

57

• Read more about built-in SPROCs in the online documentation at links.basis.com/bisprocs

• Check out these articles
 • Using Stored Procedures to Add Business Logic to the Database at links.basis.com/06sprocs
 • Unleashing the Power of SPROCs Without SQL at links.basis.com/07sprocs
 • Recipes for Successful Report Writing at links.basis.com/09reportwriting

http://links.basis.com/bisprocs
http://links.basis.com/06sprocs
http://links.basis.com/07sprocs
http://links.basis.com/09reportwriting
http://www.addonsoftware.com/cloud-services

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Babbling
With the New
Bundle of Joy
BASIS’ New Resource Bundle Editor

58

By Brian Hipple
Quality Assurance
Supervisor

Development Tools

any believe that removing
the string literals displayed to
users from application code is
only necessary in applications

that will be used in multiple languages.
Although this is the common case, there
is a major reason to remove the literals
even when writing an application for a
single language. Maintenance of these
string literals becomes very easy when
they are separated from the code; so
easy in fact, that non-programmers can
even change the text. Another benefit
to separating strings from the code
is that a single update of the string
propagates the change throughout the
entire application regardless of how
many times it appears. If the need ever
arises to internationalize the application,
simply send the resource bundle off to
a translator. In BBj®, a developer can
separate the text literals from the code
by using the BASIS resource bundle
utility called the Resource Bundle Editor
(RBE) that facilitates easy creation and
maintenance of resource bundles. See
Figure 1.

 M

Figure 1. The Resource Bundle Editor displaying a few translations of a particular key

Overview
A resource bundle is simply a collection of one or more “property files” or ASCII files
that contain key/value pairs much like a string table in BBj. The names of property
files include the name of the resource bundle and, if necessary, locale information.
For example, a HelloWorld application might have a HelloWorld.properties file that
contains default values in English and a HelloWorld_de_DE.properties file for German.
The RBE is a BBj application building block utility program that provides a very
intuitive user interface and is a turnkey solution for creating, editing, and updating
resource bundles and their associated translation property files.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Reproducing
After creating or opening a resource bundle, users can easily add keys in several ways – the [Add
Key] button, toolbar button, menu item; or by right mouse clicking and selecting the Add Menu
option from the popup menu. A dialog appears in which the user can enter the new key name as
shown in Figure 3.

Figure 3. Add a new key to the bundle

59

Development Tools

Figure 2. Define a new resource bundle

Conceiving
To create or edit a resource bundle, use the menu items or toolbar buttons inside the RBE. A
most recently used list is also available from the menu to quickly reopen resource bundles. When
creating a new resource bundle, a dialog box like the one shown in Figure 2 prompts the user for
the folder and base name of the resource bundle. A locale is the language/country/variant and is
selectable from the list or entered manually. The locale en_US is US English rather than en_GB
(Great Britain) English for United Kingdom or en_CA English for Canada.

http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Localizing
Next, specify the values for the
default and any additional locales.
The utility provides the option to
sync to a default locale as shown
in Figure 4.

Extra Capabilities
The keys display one of two
views; in a straight list or, if there
is a hierarchy in the key name,
in a tree view. The utility offers a
myriad of tool buttons and menu
items to open/close/save resource
bundles, copy/cut/paste values,
undo and redo values, traverse
keys, add/remove locales and
keys, and set options.

An advanced “Find” dialog (see
Figure 5) helps to find keys/
values, which is a useful feature
when working with very large
resource bundles.

Propagating
After creating the resource bundle,
the developer can access it from
inside a BBj application in one
of two ways; using the BASIS-
provided BBTranslator utility or
the Java ResourceBundle API.
The BBJabber utility facilitates
the creation of resource bundles
from BBx program source and
resources. This includes adding
the necessary code to access
the resource bundle via the
BBTranslator utility instead of
using string literals. Take a look at
some additional BASIS Advantage
articles – Can Your App Speak to
Your Customer? and Parlez-BUI
Français? – to learn more about
this BASIS-supplied utility.

BBTranslator Utility
The BBTranslator utility offers
several advantages. One benefit is
that developers can use BBj code
without learning another language.
The BBTranslator includes object-

60

Development Tools

Figure 4. Set values for the new key

Figure 5. Find a key or value in a bundle

http://documentation.basis.com/BASISHelp/WebHelp/bbutil/bbtranslator.htm
http://links.basis.com/11builocal
http://links.basis.com/11builocal
http://links.basis.com/09apptranslate
http://links.basis.com/09apptranslate

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 61

Development Tools

oriented methods (Figure 6) and CALL’able subroutines (Figure 7) to make the access to the resources
bundles from legacy or object-oriented code as seamless as possible. Another significant advantage is that the
resource bundle may exist in a directory referenced in the PREFIX.

Figure 6. Use the BBTranslator’s object-oriented methods to retrieve a translation for a key

Figure 8. Use the Java ResourceBundle API to retrieve a translation for a key

Developers who prefer programming in Java can use the Java ResourceBundle API to access the resource
bundle. However, this method requires that the bundle is in a jar referenced in the BBj Classpath using a
session-specific classpath. Developers can localize JasperReports using resource bundles packaged and
referred to in this manner. Although Java code is necessary for this option, it is straightforward and almost as
easy to implement as the CALL approach. ☺ See Figure 8.

For more information
 • BBTranslator in the online documentation at links.basis.com/bbtranslator

Read about
 • BBJabber in Can Your App Speak to Your Customer? at links.basis.com/09apptranslate

 • BUI localization in Parlez-BUI Français? at links.basis.com/11builocal

Figure 7. Use the BBTranslator’s CALL’able subroutines to retrieve a translation for a key

Summary
Whether or not you have internationalized your application, it is always a good idea to keep displayed string
literals separate from the application code. The RBE is a great way to manage the resource bundles that
contain this text. Since the RBE is a BBj utility, it can run in Java Web Start or in a browser (BUI mode) to
facilitate direct exchange from professional translators to the resource bundle.

Before RBE, translators relied on a tool like MS Excel, which created an extra step for the developer to
manually put the text into the application. Alternatively, translators could have used a resource bundle-aware
IDE but most do not provide a consistent manner for handling the resource bundles. Another drawback to the
second approach is that installing an IDE is a very heavy-handed requirement for non-programmers to perform
translations.

Now, all one needs to do is to send the translator a link to the RBE application! Honestly, how can that be
any easier? BASIS uses the RBE to manage resource bundles for the BASIS Custom Installer, the BASIS
Product Suite Download page, the Barista RAD tool, and for the AddonSoftware building block. Won’t you
welcome this new bundle and add it to your family of tools?

•

•

http://documentation.basis.com/BASISHelp/WebHelp/bbutil/bbtranslator.htm
http://links.basis.com/09apptranslate
http://links.basis.com/11builocal
http://docs.oracle.com/javase/6/docs/api/java/util/ResourceBundle.html
http://documentation.basis.com/BASISHelp/WebHelp/b3odbc/sessionspecific_classpath.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

tests. By running the repeatable tests before we check in any code, JUnit proves that
the new code integrated with the existing code will not produce any unexpected errors.

The second level of defense, better known as the testbed, contains the test server and
client that we designed to establish that the actual product is fit for general release. The
test server is responsible for running BBj Services, displaying the GUI, and executing
the BBj test code. The test client’s sole responsibility is to log and record the information
obtained while the test server runs the code tests. This level of testing is similar to the
way BASIS developers test their own BBj applications.

So how do we actually use these tools? Well, the first step is to compile BBj Services
so that it runs properly on all the platforms that we support. Specifically, we take the
code that we checked in during our “first level” tests, compile it on the oldest supported
platform version, and then run BBj Services on the newest supported platform. For
example, Microsoft’s oldest supported OS is Windows XP while its newest released
OS is Windows 8. Therefore, we compile on Windows XP and run BBj Services on
Windows 8. The same would apply to Linux, UNIX, Solaris, and so on. This practice
ensures that BBj Services will not require the latest OS specific features and tags that
would limit backward compatibility. As a result, BBj Services can run on all platforms
supported by the operating system vendor.

The second step in our testing process is to write the BBj code that will execute the new
features. If you are thinking we just write a simple program to test the new additions to
our product, you are half right. The first BBj program usually tests the new feature itself
using our product documentation as a guide. The next several tests integrate the new
feature within our old tests to increase the level of complexity. In fact, many of the BBj
test programs appear as code samples in the online BASIS documentation.

Finally, we run BBj Services on the newest supported platforms with our test BBj code.
If the tests have a user interface, the UI will appear on the test server with the test client
logging the results of the tests. We then analyze the logs and review for corrections.
After making any necessary changes, we rerun the tests and repeat the process until it
is error-free.

Why go through of all this effort? This meticulous testing allows us to see the actual
code and controls in action on the screen as if we were running it in a real-world
production environment. As a company in the modern marketplace, BASIS is committed
to producing the most modern, up-to-date, cutting edge software, and strives to include
modern programming features. We take great pride in what we do and the test suite
ensures that we can accomplish our goals while continuing to meet yours.

he biggest bane of software
development is releasing a
product before it has been
properly tested or containing

an array of bugs caught only after the
release. At BASIS, our number one
priority is producing the best product
that we possibly can. Although we use
many tools to achieve this goal, the most
crucial is our test suite that we designed
specifically to test our code changes at
all levels of production to ensure that our
products are released with the highest
quality. We run the suite automatically
after a new build compiles, which begins
within 8 minutes of any checkin to the
SVN source code archive. Our current
test suite has two parts - JUnit and
testbed.

BASIS uses JUnit as our first level of
defense to ensure that any new code
development does not alter or affect
other parts of the code currently working
and operating within BBj® Services.
JUnit, originally written by Erich Gamma
and Kent Beck, provides an open source
tool that comes standard with Java
and is a simple framework for writing
repeatable tests. JUnit is an instance
of the xUnit architecture for testing
frameworks and contains three distinct
parts - assertions for testing expected
results, test fixtures for sharing common
test data, and test runners for running

For more information on
 • JUnit - refer to junit.org or download it from bit.ly/7ESsE1
 • Writing JUnit tests - visit bit.ly/SSaSh2By Aaron Wantuck

Software Engineer

 T

An Insider Look at BASIS TestingAn Insider Look at BASIS Testing

62

http://junit.sourceforge.net/doc/faq/faq.htm#overview_1
http://sourceforge.net/projects/junit/files/
http://junit.sourceforge.net/doc/faq/faq.htm#overview_1.
http://junit.org/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

f you’re not familiar with free,
open source versioning tools, you
might think we grossly overlooked
a misspelling in the title and used

poor grammar to boot! Now that we
have your attention, read on.

Recently, BASIS incorporated Git
distributed revision control and source
code management (git-scm.com)
into the AddonSoftware® by Barista®
(Addon) upgrade procedure to make
upgrading customized Addon packages
easier than ever before. In this article,
we examine the Addon upgrade
process prior to the introduction of Git,

 I

By Chris Hawkins
Software Developer

By Shaun Haney
Quality Assurance
Engineer

‘Git’dy Up, Developers!

63

Development Tools

what Git is, how it adds new intelligence to the Addon upgrade process, and Git’s
overall role in an Addon upgrade.

Upgrading Customized AddonSoftware Installations
One of the advantages of developing Addon within the Barista Application Framework
is Barista’s application project structure. Developers wanting to make customizations
to Addon can create a new Barista project and save customized forms, callpoints,
reports, publics, custom classes, etc., inside that project file structure. This separation
ensures that it preserves customizations when upgrading Addon. After installing a new
version of Addon, the Barista Install Application Wizard (IAW) allows developers to re-
install these custom projects by importing customized forms and/or data tables back
into the standard product.

While this is the recommended process for making customizations, it is possible that
some developers have modified the standard product directly or have blended some
modifications in a separate project file structure with others made directly to the core
product. In addition, the emphasis of the Barista IAW is on forms and/or data tables.
The wizard doesn’t reconcile changes in callpoint code or other code not related to the
user interface.

Regardless of how customizations were made, the result is that Addon’s modifications
suit customers’ needs. In many environments, such customizations leave the product
“stuck in time,” with no possibility of an application upgrade. With Barista and Git,
developers can now modify both the user interface as well as other code, and still
realize the benefits of an upgrade!

Life Before Git
Prior to Git, developers could use the Barista IAW to incorporate form or table
modifications back into standard Addon. However, there was no automated way
to preserve those customizations if they were made directly against the Addon
installation (i.e., in the Addon file structure itself). In addition, the wizard is not
concerned with changes in other source code files such as callpoints, reports, publics,
etc., so there was no easy way to see changes in the standard code and determine
if they should be included in the customized counterparts. In terms of callpoints,
additional code that developers may have added to run before or after the standard

http://git-scm.com/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Clone the Git archive directly from BASIS. The Git archive contains every
version of Addon.

Roll the archive back to the same version as the customer's current version of Addon.

Copy the customized Addon code into the archive.

 • If developers made customer customizations directly to the Addon file
 structure, then they could copy that core code into the archive as a new revision.

 • If developers maintain the code in a separate Barista project, BASIS has
 created a set of utilities that copy the code modifications into the archive.
 Developers can then check these modifications in to recreate the new revision.

After checking in the new revision, the developer rolls the archive forward to
incorporate any changes made since the customer’s current version all the
way to the new version. Most of the changes will merge in smoothly, but a
handful of changes will likely result in conflicts.

Review and correct the conflicts, and commit each resolved file. Once the files
are committed, Git has a brand new revision containing the customized code
and upgraded code that comes with the latest version of Addon.

Move the upgraded code back from the Addon archive to the customer's copy
of Addon.

 • If developers made customer customizations directly to the Addon file
 structure, they can copy the upgraded code directly to the Addon core.

 • If developers maintain customer code in a separate Barista project, BASIS
 created a set of utilities to move the upgraded code back to the Barista project.

64

Development Tools

So, how exactly does this work? Let’s first look at a generic non-Addon scenario for
using Git. Let’s say your favorite free text editor is available from a public Git archive
and you decide that your company needs some specific enhancements for highlighting
part numbers with a color keyed to the department that produces that item. Since
this feature is unique to your company only and the editor does not provide plug-in
support, you decide to “clone” the archive and add the needed functionality into your
own version of the editor. So you use the git clone command to copy the Git archive
to your system. Then you checkout the latest version of the source code that actually
appears in your Git directory so you can make changes in place. You add the features
you want and then check them in. A new checkin appears in your archive that is not
present in the remote archive.

A few months pass, and you read that they’ve enhanced the way that the text editor
finds and highlights text. You want this enhancement but are concerned that some of
their changes will overlap yours. This time, you pull the new version from the remote
archive and Git attempts to merge its changes on top of yours automatically. Wherever
you have changed code but the remote archive hasn’t, your change is preserved.
Wherever the remote archive has changed code, but yours has not, the remote archive
change is automatically applied. However, if there are changes on the same line in
both archives, Git denotes the conflict and will not complete the merge as a brand new
revision until you resolve the conflict and commit your change. The total number of
conflicts is typically only a small fraction of the total number of merges Git performs.

Git’s automatic merge process allows you to focus only where it actually needs your
intervention – on pieces of code that you changed and have also changed in the
original source. Once you resolve the conflicts and commit the files, Git creates a new
revision of the code that incorporates both your customizations and the original source.
In this way, Git allows you to maintain custom code while still being able to incorporate
upgraded code from the original source.

Git Brings New Intelligence to the Upgrade Process
With its ability to perform automatic merges, detect conflicts, and remember custom
changes, Git speeds up the Addon upgrade process and ensures a complete upgrade.
The basic steps in the Git cycle are listed below and illustrated in Figure 1, in which
Addon revisions in Git appear as layers of an onion. Specific processing steps depend
on whether customizations were made directly into the Addon source code or saved in
a separate Barista project file system.

1.

2.
3.

4.

5.

6.

callpoint may be fine, but if the developer
took a copy from a standard callpoint
and augmented it to run instead of
the standard, there was no easy way
to see if subsequent changes to the
standard should be incorporated into
their “instead-of” callpoints. You can
imagine that analyzing source code could
be a tedious process; VARs either had
to perform three-way comparisons by
hand – comparing the original Addon to
the customized version and then to the
new Addon – or write their own in-house
scripts to upgrade their code.

In the pre-Git life, there was no single,
comprehensive process for upgrading
Addon. Each process was specific to
the company requiring the upgrade.
Furthermore, manual upgrades
delivered incomplete or “hybrid” versions
of Addon where not all of the customer’s
Addon source is upgraded, resulting in
files from different versions of Addon
coexisting in the same installation.
Last but not least, when using in-house
procedures for upgrades, there often
was no mechanism for remembering
or recording decisions made in past
upgrades. In these cases, the same
questions, like whether to replace a
piece of code with a newer version,
typically resurfaced repeatedly with each
upgrade.

What is Git?
To address the dilemma of having highly
customized code in an old version of
Addon, BASIS incorporated Git into
Addon’s upgrade process. But how
exactly would Git solve this?

Git is a distributed source management
control system. Linus Torvalds and
other open source developers originally
designed Git as a replacement for
BitKeeper, previously the versioning
system of choice for maintaining the
Linux kernel. Much like CVS and
Subversion, Git tracks file changes so
users can access past versions of their
files. Unlike Subversion and CVS, Git
is a distributed revision system in which
the user actually obtains a copy of the
entire archive and works with their copy
locally, rather than only checking out a
single revision of the files from a central
server. Having the entire archive instead
of a single revision actually allows the
user to keep their own custom version of
the archive, while still allowing that user
to get updates from the original archive
or even other customized copies of the
original archive.

http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/BitKeeper
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/Subversion

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Figure 1. The basic steps in the Git cycle

1.

3.
4-6.

2.

Copy, Upgrade, Install the Project
In order to upgrade the customization project via Git, opt to copy, not install, that
project. Once the project is copied, you'll use the Git process to upgrade the project,
and then use the Barista IAW to install it into the new Addon.

At this point, keep and use the Git archive for the next Addon upgrade so that
conflicts that occurred this time around will not need revisiting in the future.

‘Git’ the Big Picture
While Git plays a critical role in Addon’s upgrade process, it is just one step in the
whole process. Now that you're familiar with Git, let's review the entire process.

Download and Install AddonSoftware by Barista
The initial installation places Addon in the same directory structure as BBj®. BASIS
intended this copy for demo or evaluation purposes and does not recommend it for a
production installation. Once installed, use the AddonSoftware Install/Upgrade Wizard
(AIUW) to make a new instance of Addon outside of the BBj home directory. This is
the live/production version of Addon.

As mentioned, the recommended process for customizations is to use the Barista
Create Application task to set up a separate Barista project structure for your
modifications. You will save or create some files directly in the new project, and
others will be saved there automatically by Barista when using application replication
mode from the Barista Form Manager (see Customizing Barista Applications for more).

Upgrade AddonSoftware
When you're ready to upgrade to a new version of Addon, download and install the
new Addon into BBj home (overlaying the current demo or eval copy). Then use
the AIUW to perform the upgrade process. Note that the AIUW facilitates parallel
operations so users can continue to run the live production copy of Addon during
the upgrade process. Read more about the AIUW in AddonSoftware Installation and
Upgrade Processes, but in short, this wizard chains together the following tasks:

• Make a new copy of Barista and Addon in a user-specified location

• Copy backed-up administrative and syn file data from the live production
 installation

• Run the Auto-synchronize process

• Copy and/or install other Barista projects (customization projects or verticals)

65

Development Tools

For more information, read
 • Create Vertical and Customize
 Applications, Parts 1, 2, 3
 links.basis.com/baristaref
 • AddonSoftware Installation and
 Upgrade Processes
 links.basis.com/addoninstallupgr

If you are not using a separate Barista
project for customizations, then after
using the AIUW to create your new
instance of Addon, perform the Git
processes and then copy the desired
files directly into the new copy of
Addon.

Conclusion
While customer installations vary and
Git may not be the silver bullet that
slays all villains, the incorporation of
Git into the Addon upgrade process
is a huge step towards standardizing
Addon’s upgrade process and greatly
simplifying the arduous task of finding
and incorporating Addon’s upgraded
code into a custom installation. Git also
makes future upgrades even easier
than the initial upgrade by ensuring a
complete upgrade and remembering the
decisions made in previous upgrades.
For those developers who have put off
an Addon upgrade due to the difficulties
involved, Git is race horse that will “get”
you across the finish line.

Hop on today and git-dy up!

http://links.basis.com/addoninstallupgr
http://links.basis.com/baristaref
http://links.basis.com/baristaref
http://links.basis.com/addoninstallupgr
http://links.basis.com/addoninstallupgr

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Figure 1. Scheduling panel

Figure 2 shows the configuration of the task group which executes weekly, every
Monday and Friday at 1:44 pm. Note that specifying an “End” date would cause the
Task Group to cease executing at that particular point in time and a change to the
“Repeat Every” field allows for skipping weeks.

Four types of Tasks are available with the scheduler: Run BBj Program, Execute
System Call, Pause Replication, and Resume Replication. Each Task type has a
different set of configuration settings as shown in Figure 3.

execute, and how often the Task Group should repeat execution. A Task is a single
item to be managed and executed by a Task Group. The best way to understand the
scheduler is to simply walk through an example.

Scheduling Example
The example in this article illustrates what might occur when making a weekly backup
of data files located on a replication target for zero downtime on the live system.
Outside the BBj scheduler, this particular job would require additional Java or BBj
coding to handle pausing and resuming the replication job but since the scheduler
is designed with BBj in mind, it requires only a couple of mouse clicks to perform
these tasks.

The Scheduling panel in the Enterprise Manager displays a list of all currently
configured Task Groups and provides an interface for creating, modifying, and
removing them. The panel shows the tasks within each group, when they will run next,
and when last run. Access the Scheduling panel by selecting the “Scheduling” item
from the Enterprise Manager navigation area.

Figure 1 shows four Tasks that make up this Task Group. The first task pauses the
replication job, which is not as easily done from something like a cron job. This ensures
that the replication target is in a clean state and ready for backup. The second task
executes a BBj program that could do anything needed to prepare the data for backup.
Next, the scheduler executes a system call; in this case executes a Windows .bat batch
file to perform the backup operation. Finally, the last task automatically resumes the
replication job so that the target can catch back up with the source.

here are numerous reasons why
an administrator or developer
might want to schedule particular
tasks to run automatically at a

particular point in time or at a regular
interval such as a nightly backup job,
maintenance utility, or some kind of batch
processing job. One common method
for scheduling tasks is the UNIX or
Linux cron job. However, certain types
of tasks (especially those which require
interaction with BBj® Services) would be
more easily managed if BBj had a built-
in scheduling feature and it would also
remove operating system dependencies
from an administrators deployment
plan. Therefore, BBj 12 introduced a
new scheduling feature to the already
robust set of tools available in the BBj
Enterprise Manager as well as the
Admin API.

Two components make up the scheduling
system: Task Groups and Tasks. A Task
Group contains a list of one or more
tasks to be executed synchronously in
sequential order, when it should first

66

 T

System Administration

Platform-Independent Task Scheduler

By Jeff Ash
Software
Engineer

By Nick Decker
Engineering
Supervisor

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Because we are obsessed with speed and
making BUI as fast as possible, adding
several seconds to the launch time was
unacceptable, especially because new
development builds typically occur just once
per day. Since the files in the bucket did not
change very frequently, constantly querying
the bucket every time a user hits the download
page would be overkill. If we could somehow
query the bucket on a regular basis and save
out the results to a local file on the server,
then we would shave several seconds off the
launch time.

BBj’s new scheduling feature fit the bill
perfectly! In just a couple of minutes, we set
up a job to run a BBj program that retrieved
the current list of available cloud builds and
saved the information out to a file on the
server. We configured the job to run every 15
minutes so the download page would never be
out of date by more than a quarter hour. The
job itself only takes a few seconds to run so
the load on the server is negligible. We then
modified the BUI download program to retrieve
the list of available builds from the local file on
the server, which occurs almost instantly.

The benefits don’t stop there. Because we
have replicated servers located around the
world, the BUI app is served to customers
from the server nearest to them. A user
in Germany, for example, will be running
the download page app from our server in
Ireland, while we in Albuquerque get it from a
server in California. All of this is transparent
to the end user by way of geo-aware
servers. Additionally, the replicated servers
automatically get the latest set of available
builds as the scheduler saves that information
to a local file that is automatically pushed to
all of the servers via BBj’s replication ability.
Lastly, Amazon’s CloudFront content delivery
network sends the desired BBj build to the
user from the server closest to them, further
streamlining the download process.

Summary
With the addition of a powerful platform-
independent scheduler in the BBj product,
administrators and developers have more
power and flexibility at their fingertips. It is no
longer necessary to use one or more third
party schedulers to manage BBj backups or
other business processes requiring execution
at regular intervals. And finally, since the
scheduler is built right into the BBj system, it
makes certain interactions with BBj-related
processes such as replication, much easier to
configure and manage.

67

System Administration

Figure 3. Task Editor showing Run BBj Program (left), Execute System Call (top right), and
Pause A Replication Job (bottom right)

For further information regarding the refactor and optimization of the BUI-based BASIS Product Suite
Download page, see The Anatomy of a Web App Makeover at links.basis.com/12webapp

Another Use Case
When we first designed the new BUI-based BASIS Product Suite Download page
(links.basis.com/getbbj), one of our goals was to integrate it seamlessly with
the automatic build system in the cloud. The BUI program accomplishes this by
utilizing a custom BBj class that dynamically retrieves the available released and
development builds from an Amazon S3 bucket (S3 is the nickname for Amazon’s
Simple Storage Service, which we think of as a large hard drive in the cloud). The
end result is that the download page lists all available BBj downloads automatically,
without any human intervention. The code worked perfectly, but subsequent
performance analysis revealed that querying the cloud machine at runtime was
occasionally slow. Amazon guarantees uptime for their servers and while access
is typically very fast, various tests showed that querying the S3 bucket added
anywhere from 0.5 to 5 seconds to the launch time of the BUI app.

Figure 2. Task Group Editor

http://www.basis.com/bbj-download
http://links.basis.com/12webapp

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

By Mike Phelps
Software Engineer

SLOW - Getting all the source files from our source code
repository, compiling them and assembling them into the
final downloadable and installable package took many hours
every day. During a normal day, we could get only two builds
at most.

SERIAL - Only one build could run at a time. Quite often
we needed to publish daily builds of more than one BBj®
version at a time, such as a development build (representing
the latest work found in the “mainline” version of our
source code repository) and a release build (representing a
numbered release version of BBj). The build system could
not perform simultaneous builds, guaranteeing delays during
our most hectic periods.

MANUAL - The build system was not completely automated.
A human being always had to press the button to start
a build, and if the build failed, a human being (the Build
Master) had to comb through the log files to determine the
cause. If, late in the afternoon, an engineer checked in a
source file containing a syntax error, we wouldn’t find out
until the morning of the next day that it caused the nightly
build to fail. The Build Master had to do some manual
detective work to find out what file caused the build to fail
and who checked that file into the source code repository so
that person could be tasked with fixing the problem.

FALLIBLE - There was always the worrying potential for
catastrophic failure. If our Build Master ever happened to get
hit by a bus, it would have taken a long time for someone
else to learn how to operate and maintain the system.
Likewise, had our dedicated build server ever failed, we
would have spent several painful days trying to get another
machine properly configured to take its place. We had no
immediately available backup server or personnel.

BASIS engineers are responsible for completing a
status report template each week. It usually isn’t
difficult for me to fill in the first four sections and
describe what I’ve worked on or elaborate on problems

I’ve encountered or summarize meetings I attended; that’s
all pretty standard stuff for a status report. But those last two
items - Interesting Article Review and Innovative Ideas - confront
me every week. They are a standing challenge, like a gauntlet
tossed at my feet. They are a rebuke for my complacency and
resistance to change, a nagging reminder that I need to spend
time thinking about new technology and new ideas.

You see, BASIS is constantly on the lookout for better ways of
doing things. More than any other company I’ve ever worked
for, BASIS strives to keep abreast of the latest technology and
continually improve the software development process. Some
of these technical innovations are plainly visible in our products
(BUI, anyone?), while others are implemented “behind the
scenes” and make us a stronger, more successful company.
This article tells the story of one such improvement, something
that indirectly benefits everyone who uses BASIS technology.

It Wasn’t Broke, but We Had to Fix It
The Business BASIC language, as you might imagine, is a
large and complex piece of software. It has thousands of
source code files and associated libraries. A few years ago it
took an equally complicated system to build it. We appointed
a machine as our dedicated build server, a pile of arcane build
scripts written in various languages, and a designated “Build
Master” engineer who spent all of his time keeping everything
running. This arrangement got the job done and worked well
for decades. It was clear to everyone, however, that it had
several inherent disadvantages.

Continuous Innovation at BASIS
Building and Testing in the Cloud

68

 B
•

•

•

•

Obviously our software build methodology was ripe for
a little innovation. Nothing was broken, but we wanted
(needed) to fix it anyway, so under “Innovative Ideas” I
described how ‘continuous integration’ (CI) could make
our build process better.

http://martinfowler.com/articles/continuousIntegration.html

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 69

CruiseControl, the “grandfather” of CI build servers. We set
it up on a spare Linux server and turned it on to building BBj
whenever anyone committed a change. These builds were not
complete in that they did not produce the installable product
delivered to customers; they were meant only to give quick
build success/failure feedback to the engineers. The result was
fewer failed builds on the main build system.

We later converted to a new CI build server called Hudson
in order to take advantage of its beautiful web-based control
system. Instead of arranging for each automated build with
hard-to-decipher XML files, we configured the complete
system and every build project by filling out GUI forms on a
web page. After that, enthusiasm for the CI conversion really
began to take off. More engineers got involved in running and
maintaining the build system since it was easy to comprehend
and fun to operate.

This proved so successful that we gradually added more
tasks to the CI build system, like documentation builds. While
fleshing-out and expanding the CI build system, we continued
to rely on our original build system to produce the final product.
Testing involved comparing the CI results with the builds from
the legacy system. When the results were the same, we knew
we had succeeded.

Ascending to the Cloud
BASIS moved to the cloud in 2010. Cloud computing refers
to the increasingly common practice of purchasing computing
power from a commercial services provider instead of
maintaining an in-house collection of servers. (The word
“cloud” in this term means the offsite collection of computer
resources and data storage typically shown in diagrams as a
cloud symbol.) We contracted with Amazon Web Services and
began re-hosting our operations from on-premise servers to
Amazon Elastic Compute Cloud (EC2) instances. We moved
our Subversion source code repository to a persistent cloud
server that summer and then transitioned the build system later
in the fall.

Hudson worked extremely well in the cloud, thanks to a special
Amazon EC2 plugin developed by Kohsuke Kawaguchi (the
original creator of Hudson at Sun Microsystems). Although
our ground-based Hudson installation could handle multiple
simultaneous builds, the small number of machines in our
onsite server lab that we could use as slaves still limited us.
During busy times the Hudson server would get progressively
slower, while requested builds would pile up in a queue waiting
for a slave machine to become free. The Hudson CI server in
the cloud, on the other hand, was able to start as many slave
instances as required to handle the load. We could do an
unlimited number of different simultaneous builds, and then
scale back by shutting down the slave instances when their
work was finished and the crunch was over.

In early 2012, when the original author of Hudson and most of
the project’s developers had a disagreement with Oracle (the
corporate sponsor who took over from Sun Microsystems) and
decided to fork the code base, we followed them to their new
rebranded CI server, called Jenkins. The change was painless.

The use of a CI server and the move to the cloud caused
a revolution in our testing and deployment process as well.
Jenkins allows “chaining” build projects together in various
combinations. This means that we could break up long,

Learning to Continuously Integrate
The term continuous integration refers to a software
development practice where teams of programmers
frequently synchronize with and commit their changes
to a code base repository, then rebuild the code base
after every change is committed. This takes the pain out
of getting code from many different people to compile
successfully, and helps catch bugs by providing much
quicker feedback about build results. Continuous
integration is closely associated with other development
techniques such as ‘continuous testing’ and ‘continuous
deployment,’ where the code is constantly tested and
constantly delivered to the end users.

These techniques all imply a high degree of automation,
efficiency, and speed; things our build system conspicuously
lacked. It all sounded wonderful, but we realized that adopting
this technology was going to be a tall order. It was not
possible to convert a long-standing, deeply-entrenched-in-
the-corporate-culture build system overnight. There were
several prerequisite steps that must be taken.

First of all, the code base must be stored in a version control
system (VCS) such as CVS, Subversion, Git, Mercurial, or
one of many others. CI servers, the software application that
takes charge of doing software builds, need a convenient
single location from which to get the code to build, and need
to work with today’s popular version control systems. BASIS
has always used a VCS and currently uses Subversion to
maintain the Business BASIC code base.

Next, the software build must be automated, meaning that
the code base should compile with some type of script
executed by a command from a shell prompt. In its simplest
form, a CI server is a constantly running program that listens
to signals from a VCS repository. When the VCS announces
that a file has been added or deleted or modified, the CI
server checks its list of build projects and starts a software
build by invoking the command associated with that project.
The CI server does not build the software itself; it runs a
command that starts the automated script which does the
build. When the build is finished, the CI server intervenes
once more to store the results in an archive and notify any
interested parties about success or failure.

Our existing build system was already partially automated;
we had a collection of scripts that we could start from
a command-line shell. We had developed these scripts
over many years, using whatever scripting technology
the build system architects were most comfortable with at
the time. We decided to start over from scratch using Ant
(Another Neat Tool), a well-known and extremely flexible
build scripting system written in Java. This rewrite effort
brought much needed simplicity and consistency to the
build process, but it was by far the most time-consuming
and difficult part of the conversion to CI. Ant allowed us to
store the build scripts in the same directory packages as
the code they were meant to build, or in other words, each
time it checked the source code out from the repository, the
Ant build scripts came with it automatically. Ant was easy
to learn and understand, and best of all, Ant was able to
compile the BBj code base in less than ten minutes!

With the prerequisites out of the way, we were ready
to begin using a CI server for the first time. We chose

http://en.wikipedia.org/wiki/Another_neat_tool
http://cruisecontrol.sourceforge.net/
http://hudson-ci.org/
http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://jenkins-ci.org/
http://en.wikipedia.org/wiki/Cloud_computing

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Summary
Our new CI cloud-based build, testing, and delivery system
is fast, easy to operate, almost infinitely scalable, and (we
believe) disaster-proof. The payoff has been remarkable. Is it
perfect, or for that matter, is it even finished? I think not, it’s a
continuous process. We always have a list of improvements to
make, inefficiencies to iron out, and new features to implement.
With the cloud, there are cost savings available when we tweak
this or cut back on that or take advantage of special offers. In
this business, nothing remains unchanged for long...except
for the weekly BASIS engineering status reports, which still
end with the twin challenges - Interesting Article Review and
Innovative Ideas.

70

•

•

•

•

•

multi-step processes into smaller individual build projects,
then link them together so that any given build step has a
‘parent’ predecessor build project and a ‘child’ successor build
project. The ‘child’ build projects do not run if their ‘parent’
builds fail. We wrote Ant scripts to initiate various kinds of tests
and then linked them in Jenkins to the software build projects
whose results we designed to test. Each time a software build
successfully completes, another build starts which retrieves
the compiled code from the CI server’s archive, assembles
it into an install package, and uploads it to an Amazon S3
(Simple Storage Service) ‘bucket’ in the cloud which anyone
at BASIS can find. After the software build and packaging/
upload projects complete, the CI server instantiates new slave
instances in the cloud and on premises, which correspond to
all the platforms supported by Business BASIC, loads each
slave with the packaged build results, and calls the associated
Ant scripts to initiate testing. The entire process is totally
automated and runs without human intervention. (Well, almost.
A human being triggers the process by checking in a change to
the code base.)

Living in the Future
We are doing things now that were in the realm of science
fiction a few years ago.

The open-source Selenium testing framework integrated
very well with our CI server, allowing us to automate
testing our BBj GUI interface classes and each
individual method belonging to them. This kind of testing
previously demanded hours of tedium from a human
being sitting in front of a screen with a mouse and
keyboard, meaning that it was not done very often.

At BASIS, we run the administrative and operations
side of our company using software written in Business
BASIC (we ‘eat our own dog food’). We have a
development environment in which we test new code
and a production environment where we use stable
code. In the days before automation and the cloud,
getting new code from the development environment

over to the production environment was a somewhat
iffy manual operation. The two environments were not
identical; what seemed to work in development might not
work in production. Now, the issue is resolved with some
help from the cloud. When we want to deploy the latest
software version to the production server, we invoke an
instance of a server that is identically configured to the
production server, run tests to verify everything works,
and then use rsync (the Linux remote file synchronization
utility) to copy all the new or altered files to the production
server. Quick, easy, and as foolproof as it gets.

Running a TechCon conference used to involve very
expensive, time-consuming configuration of in-house
and rented computer equipment. All the issues and
costs involved with physical transportation, installation,
networking, testing, maintenance, and takedown were our
responsibility. The cloud has made that old level of effort
seem incredible, even ridiculous. We can now prepare
Amazon Machine Images representing a fully configured
computer running MS Windows or Linux with all the
necessary software pre-installed, then invoke as many
instances of them as we want, whenever we want, from
the presenter’s personal laptop while the demonstration
is in progress. We can travel light, but still take with us all
the power we need!

For more information on continuous integration, read
 • Continuous Integration - Fowler, Martin. (2006). Martin Fowler. Retrieved 6 November 2012
 from bit.ly/1k01VP
 • The Cornerstone of a Great Shop – Jared Richardson Methods & Tools, Spring 2006
 from bit.ly/eXtyT9

Tools mentioned in this article include
 • Ant 		 ant.apache.org
 • Amazon AWS aws.amazon.com/documentation
 • Hudson	 wiki.eclipse.org/Hudson-ci
 • Jenkins	 jenkins-ci.org
 • rsync	 rsync.net	

 • Selenium	 seleniumhq.org

http://aws.amazon.com/s3/
http://en.wikipedia.org/wiki/Rsync
https://aws.amazon.com/amis
http://martinfowler.com/articles/continuousIntegration.html
http://www.methodsandtools.com/archive/archive.php?id=42
http://ant.apache.org/
http://aws.amazon.com/documentation/
http://wiki.eclipse.org/Hudson-ci
http://jenkins-ci.org/
http://en.wikipedia.org/wiki/Rsync
http://seleniumhq.org/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

By Susan Darling
Technical/Marketing Writer

EMQUE’s journey into the browser user interface (BUI)
world began two years ago as chronicled in the BASIS
Advantage article The Dawning of a New Age with BUI
Apps at EMQUE at links.basis.com11emque. In their

first steps, they wrote two new apps - The Foreman and The
Owner - for use on mobile devices. So now, two years later, we
wonder;

 E

“Who is using these apps?”
“What has been the response?”
“In what direction is EMQUE’s journey continuing?”
“What sage advice can EMQUE share with others who
might (should) follow in their footsteps?”

Since beginning their journey, EMQUE has certainly moved
forward with several innovative industry-leading revisions.
Their products have risen to the top and are now utilized in
several notable New York City renovations, including the Jacob
Javits Center and Madison Square Garden.

In the Community
For the second straight year, from May to November during
the Knicks basketball and Rangers hockey off-season,
Turner Construction is managing the Madison Square Garden
renovation project (time lapse at vimeo.com/47174032).

Phase 1 ran during the 2011 off-season, Phase 2
completed this November, and Phase 3 will finalize the
project in November 2013.

Because of time constraints as well as restricted building
use, several trade contractors who are EMQUE customers
work around the clock in three 8-hour shifts. These
construction foremen use iPads and EMQUE’s BUI app,
The Foreman, to complete their work tickets in this
completely paperless solution. The foremen enter the
materials manually or download the purchase order
information from their in-house servers into the work
ticket, type in the description of work, number of hours,
and with a tap (iPad’s click), create a PDF for the
customer to review that even includes their company logo.
If the customer requires a signature on the work ticket,
the foreman captures that signature in BUI, which adds
it to the PDF and then destroys the captured signature as
a security measure. In the final step, the foreman selects
the recipient’s email address and sends the work ticket
out instantly.

All of this information is entered in real time so it is available
immediately for the accounting team at the home office
to process and generate the bills. Now, something that
used to take weeks of paperwork processing, completes
instantly. Using this mobile app is far more efficient, saving
time and minimizing potential errors with real-time entry,
day and night. Add the fact that Turner Construction
created a free hotspot at the Garden and since iPads use
WiFi rather than cell service, there is no additional data
overhead. EMQUE’s Foreman solution is easy, real time,
penny-wise...and very attractive!

EMQUE On Cue
With BUI Apps

That are ‘In’

EMQUE On Cue
With BUI Apps

That are ‘In’

71

Partnership

http://links.basis.com/11emque
http://www.newsday.com/sports/basketball/knicks/phase-ii-of-madison-square-garden-renovation-looks-suite-1.3891490
http://www.newsday.com/sports/basketball/knicks/phase-ii-of-madison-square-garden-renovation-looks-suite-1.3891490
http://vimeo.com/47174032

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Partnership

72

In the Media
EMQUE’s move to BUI has piqued great interest in the industry.
In fact, even in a rather slow market, interest has gone very
public. And that is exactly what Mike Quagliarello, EMQUE’s
President and Chief Architect, intended.

“Our approach is that if we get our name out there
enough now, when the economy opens up, they’ll look to
EMQUE because they’ve seen our name out there.”

Figure 1. Job Details before and after applying BASIS-supplied prototype CSS

Figure 2. Time Details before and after applying BASIS-supplied prototype CSS

Adding to The Foreman and The Owner apps already in BUI,
EMQUE has written several specialty mods for The Owner such
as cost reports, cash flow and income statements, and the ability
to view and email aged receivables, among other reports. EMQUE
has also moved their Estimating app to BUI and just recently
released seven rather large apps for the iPad in what they call the
Project Manager Suite.

EMQUE is approaching business solutions in their Project
Manager Suite from a completely different angle. Quagliarello is
very excited about cascading style sheets. Compare the look of
their Time Sheet app in Figure 1 and Figure 2 when applying
some prototype CSS magic.

Advertising, local television, and trade journals have all been
vehicles for EMQUE’s name recognition and telling their story.

A local television station reported on EMQUE’s move to
mobility with their initial BUI apps. That report appeared in the
Long Island Business News on June 24, 2011 and stirred up
great feedback. Watch it at vimeo.com/25554962#.

A high-end national building magazine popular for its
contracting information, Engineering News Record (ENR),
contacted Quagliarello about his mobile apps and published
an article about the apps in their October 22 edition. In
November, a corporation that publishes local newspapers
nationally, ran an article about mobile apps and turned to
Quagliarello for his expertise.

In addition to all that press, this past spring the Long Island
Software & Technology Network (listnet.org) awarded
Quagliarello and EMQUE the distinguished LISA (Long Island
Software Award) at a ceremony attended by 400 technology
professionals from around the region. EMQUE earned this
award for their cutting edge work in wireless apps for the
construction industry, namely The Foreman. It offers real-
time access to functions vital to maintaining efficiency and
productivity on tablets like Apple’s iPad. Congratulations,
EMQUE! Read their press release at emque.com/LISA_
pressrelease.pdf.

In the Field
In the old days of CUI apps, screen layouts and structures
were based on that character-based 80x25 world.
Quagliarello’s move to GUI in 1998 meant more than just
putting a pretty face on the app, it meant revisiting the app
and solving old business problems using the tools of the new
environment. Once in GUI, the move to BUI was simple, but
again, they revisited the business process and designed
new solutions using BUI and the iPad tablet. By doing so,
Quagliarello solved some issues with mobile devices running
in BUI that their apps in non-browser-based GUI and CUI
could not solve.

EMQUE saw a new opportunity to put timesheet entry into
the field. How much more efficient could it be than to enter
time clock information real-time, on a smartphone, while in the
field? They developed the first version of mobile timesheet for
the iPad. Quagliarello notes,

“Initially the cost of iPads restricted us from selling more
apps. Some of our clients might have 40 or more users of
those initial apps, so the equipment cost was prohibitive
in this soft economy. We began looking at how we could
produce similar solutions on a smartphone. Once again,
we found if we looked at our previous solutions to the
problem and ‘wiped the slate clean’ in our minds, we could

design the solution again, but this time work on a smaller
footprint – and we did – our TimeEntry app has raised a
lot of eyebrows!”

http://vimeo.com/25554962#
http://listnet.org/
http://emque.com/LISA_pressrelease.pdf
http://emque.com/LISA_pressrelease.pdf

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

As EMQUE continues their journey along the technology trail, customers are
beginning to line up to use the newest technology and enjoy the freedom
that comes with reducing the paperwork jungle. Cost savings, increased
efficiency, improved user experience, support for a variety of devices that
meet individual needs and budgets, all contribute to making EMQUE’s
construction management solutions the “in” apps. And if they are developing
totally cool “in” apps with BASIS’ BUI, they must be doing so as part of the
“in” crowd of developers. BASIS technology’s backward compatibility means
that you are already part way “in.” There’s room for many more...it’s time for
you to join in!

In the Future
Over the last three to six months, business has been picking up for EMQUE
customers. While customers begin to purchase iPads for their foremen,
they are migrating to the BUI apps for their laptops. New customers are just
now starting to talk to them about The Foreman app, so Quagliarello hopes
to gain new customers in the next six months. They are certainly seeing
growing interest in their BUI apps.

In the Advice Column
The greatest pearls of wisdom are straight from Quagliarello’s mouth...

Partnership

73

 “As the second half of 2012 approached and we found ourselves
mastering the nuances of BUI and the various devices we were
working with, our attention turned to designing apps that are not
only functionally efficient, but also looked cool. We welcomed CSS
in BUI with open arms. This is not your father’s Business BASIC
anymore!”

• Read the first steps of EMQUE’s journey in The Dawning of a
 New Age with BUI Apps at EMQUE at links.basis.com/11emque

• Watch the Java Break that featured EMQUE’s successes and
 a demo of the Time Sheet app running the CSS’d version at
 links.basis.com/jb-emque

• Find more Java Break presentations at links.basis.com/javabreak

EMQUE Consultants, Inc. develops and custom designs, for
commercial construction contractors, a fully integrated suite of
applications employing best industry practices. Perfect Project,
EMQUE’s name for the created systems, highlights its seamless
integration into an office automation suite. A Perfect Project installation
makes financial analysis of business operations a breeze, helping
customers know when they are profitable and empowering them to make
better financial decisions.

Mike Quagliarello, founder of EMQUE, is President and Chief Architect.

Visit EMQUE at www.emque.com.

Register today
links.basis.com/tcreg

go from this...

...to this!

Attend this all new
training class

May 17th

 after TechCon2013

Learn how to

Make
Your Web App

Sizzle With CSS

“When we moved to the GUI world in the late 90s, we revisited the
business processes that were automated in our character systems.
Now as we move full throttle into BUI with new devices, we are
building a better mousetrap once again.”

“If I was writing this article, I’d title it ‘What the h— are you waiting
for?’ I don’t understand why they [other BASIS developers] aren’t
moving forward...’Give up your WYSE50 terminals!’“

http://links.basis.com/tcreg
http://links.basis.com/11emque
http://links.basis.com/javabreak
http://links.basis.com/jb-emque
http://www.emque.com/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc74

A Web Service Sprouts
Great Benefits at Bluegrass

Partnership

By Susan Darling
Technical/Marketing Writer

or more than a decade, BASIS has propagated the
ease and benefits of hosting a Web Service with
BBj®. Today, there is still no easier or better way to
communicate, share data, and invoke functionality

between disparate systems written in different languages and
running on different platforms.

So, have you grafted a Web Service into your app yet?
Perhaps you haven’t considered it or thought of a worthwhile
application, or perhaps you have thought about it but put it off
until you had stronger motivation.

Take a close look at how one BASIS customer sowed their
system with a Web Service that sprouted great cost savings
and tremendous increase of productivity.

Look at Bluegrass
Meet Bluegrass Family Health, a managed care corporation,
with a tremendous records processing load. With such a high
volume comes an even higher need for accuracy in correct
coding. To meet that need, Bluegrass chose to implement
“ClaimCheck” from McKesson, America's oldest and largest
healthcare services company. ClaimCheck is a proven and
widely-used comprehensive medical claims coding and review
software system that audits claims for correct codes and to
assure that the proper payment rates are applied. Bluegrass
shared in the industry’s regard for McKesson’s off-the-shelf
ClaimCheck solution as “best-of-breed” and wanted to join the
many other insurance companies who use this system.

Look to Web Services
While ClaimCheck is a Windows-only product, Bluegrass runs
DIAMOND 725 in PRO/5® completely on AIX RS6000 UNIX
so they needed a dependable cross-platform solution that
interfaced equally well with UNIX and Windows. Web Services
does just that, seamlessly using modern network protocols
without the more archaic method of hopping files over FTP.

Bluegrass called upon their BASIS reseller EMS, led by
President Dave Cominsky and Software Developer, Karin
Parker, and together they began looking into the process of
implementing ClaimCheck into Bluegrass’s enterprise system.
The first step was to write the BBj code for consuming the Web
Service so they reached out to BASIS for assistance. BASIS
Engineer Brian Hipple provided sample BBj code to guide
them through the process. Basically, their software solution,
DIAMOND 725, would send the claim data in XML format to the
ClaimCheck server for verification. Once verified, ClaimCheck
would then process the data and generate a response to
update the claims in DIAMOND 725.

While they were writing and testing the BBj code, Bluegrass IT
Director Preston Gorman was busy defining and customizing
rules that the ClaimCheck code review software would follow to
validate claims and remediate errors. Gorman explains,

“For example, let’s say a maternity claim comes into the
DIAMOND system but is actually billed for a man. The
extract process pulls all claims and then sends them to the
ClaimCheck server to look at the codes and any related rules
such as “claim type=maternity” and “gender=male”. We had to
define the server’s response when it identifies this particular
claim and the rules for how to respond...whether to reject the
claim and request re-submission, whether to deny the claim, or
whether to adjust the gender to female.”

 F

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Look Ahead
While national healthcare is still reforming, Bluegrass is taking
a wait-and-see approach before prioritizing their next steps.
Currently, their wish list includes moving ahead with migrating
their entire enterprise to BBj and implementing some other key
Web Services.

One Web Service of great benefit would be an EDI (electronic
data interchange) system that provides XML wrappers in
addition to the old X12/ANSI format to facilitate delivery of files
to their ultimate destination in the proper format. Another great
application for Web Services would be a real time connection
between claims payment data in their DIAMOND application
and their clinical management in another McKesson product.
Currently, the clinical management data is batch processed
nightly for real data “every 24-hours.” A true real-time
connection would allow nurses in the field to see up-to-the-
minute claims history and clinical management data as they
pre-authorize procedures and answer questions about medical
care that a patient is about to receive. That patient may have
seen the doctor that day for a procedure or filled a prescription
moments earlier so the nurse and other health care providers
could now make a good medical decision based on accurate
and recent clinical activity. This would be a major win for both
the patient, who deserves the best healthcare; and the provider,
who wants to give the safest and best healthcare possible.

The next step in migrating their full enterprise to BBj would
be to move their database from PRO/5 to BBj. While this is a
relatively small step, the return is huge. With their data in a
BBj database, Bluegrass could immediately access triggers
and/or replication to bring that real-time data to their clinical
management system, without the need for a third party solution.
Simply put, every time data is modified, added, or deleted, a
trigger would replicate that change to their clinical management
system, keeping them in sync.

Summary
Harvesting a bounty of benefits may just be a simple Web
Service away. Regardless of how fertile the environment or
recent your BBx® generation, a Web Service may be the answer
to taking your application to a point of greater return. While you
too may desire a complete overhaul into BBj, take Gorman’s
advice and keep the scope simple and focused, to begin
sampling BBj bounty earlier in the process. Then sit back and
enjoy. Happy harvesting.

75

Partnership

“Before ClaimCheck, we used code review software
that generated reports of these types of errors for our
staff to review manually and decide what to do and
hopefully resolve correctly. Now, adding our own rules and
intelligence to the huge library of rules ‘tried and true’ in
other larger health plans, we can rest confidently on the
thoroughness and accuracy of this process. It’s totally
automatic...100% hands off.”

• Read these BASIS Advantage articles for -
 • The basics on writing a Web Service, From Legacy to Enterprise With BBj Web Services at links.basis.com/09wsdemo
 • Enterprise Manager's new Web Services tool, Jetty Offers Legacy Programs via Web Services at links.basis.com/09jettyws

• Search for more Web Services articles at links.basis.com/adv-ws
• Review BBj and Web Services in the online Help at links.basis.com/bbjwebserv

Bluegrass Family Health, a subsidiary of Baptist Healthcare System, is a not-for-profit managed care corporation based
in Kentucky that offers both fully insured and self-funded services to commercial employer groups. Their provider
network is made up of hospitals, clinics, pharmacies and doctors. http://www.bgfh.com

Gorman continues,

Accurate and automatic; this new process delivers great cost
savings as it ensures correct coding. In addition, it flags bills
that might be coded inadvertently with a more expensive billing
code or in a manner determined to be unethical or fraudulent.

What has been the impact of consuming this ClaimCheck
Web Service? Gorman answers,

“It has helped us a great deal by delivering a simple and
effective architecture in which we could interface two very
different applications. The Web Service helped us integrate
the operation of a BBj environment in a uniform manner
with an application built entirely on Microsoft technologies
in a virtual environment. The result has been a great
improvement in the number of claims that we can audit
automatically and accurately.”

Look Back
The original scope of the project was to integrate with
McKesson’s Web Service and to migrate the enterprise entirely
to BBj. To do so also required taking the time to test the core
components - CRM, billing, eligibility, and batch import/exports,
to name a few. This was a huge undertaking that required more
time and resources than were available.

As a result, Gorman discovered and now quickly advises
others in the BASIS community to identity the scope and
stay focused on that goal.

“As we began this project, we lost track of the narrow scope
of developing the Web Service interface and deploying it. If
we had decided early on to run a dual-environment for a while
before migrating the entire environment over to BBj, I think we
could have been up so much more quickly and easily.”

http://www.bgfh.com/
http://links.basis.com/09wsdemo
http://links.basis.com/09jettyws
http://links.basis.com/adv-ws
http://links.basis.com/bbjwebserv

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Building Blocks

76

By Ralph Lance
Software Engineer

he Barista® Application
Framework now includes
several new debugging
features that simplify your

troubleshooting efforts in your Barista
and custom callpoint code. Now armed
with the ability to interrupt the process
by pressing the [ESCAPE] key, you
can debug and dot-step through
the code! In addition, you can view
the dump to see the contents of the
workspace, and start and stop tracing.
Lastly, you now have the option to

view the namespaces and the contents
of the namespace variables. Read on
for more details about these great new
debugging features.

Listed under Development in the Barista
MDI menu are the four new functions as
shown in Figure 1; Interrupt Process,
View Dump, Start/Stop Trace, and View
Namespaces. Launching a standard
maintenance form, grid maintenance
form, or header/detail form automatically
enables these new functions.

Let's take a look at how they work. Figure 1. New debug options in Barista’s
development menu

 T

New Ways to Debug Barista

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Figure 2. Interrupting a process in Barista

Building Blocks

77

Figure 3. Result of a DUMP command to view the current workspace variables and their values

Figure 4. Result of Barista’s View Dump menu option

Figure 5. Expanded view of variables

Interrupt Process
Interrupt Process sends an escape to the
Barista process as shown in Figure 2
and then falls to the BBj® SysConsole, if
allowed.

From here, you can easily list non-
protected programs, interrogate variables,
execute dot-step commands, or perform a
DUMP command (see Figure 3).

View Dump
One alternative to reviewing dump data
is to use the menu item View Dump, which
presents the data in a developer-friendly
tree with global strings separated from the
program variable data (see Figure 4).

The global strings and program variables
appear alphabetically to help find the
item in question quickly (see Figure 5).
Optionally, you can view the individual
elements of array variables as well as the
template and contents of templated strings.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Building Blocks

78

Start/Stop Trace
Starting a trace displays a dialog as shown in
Figure 6 in which you can choose whether the
trace should be timed or untimed. The advantage
of a timed trace is that you can use the BASIS
Performance Analyzer to analyze the program trace
file for potential optimizations. An untimed trace
is handy for viewing a step-wise path through the
code (handy for something like an infinite program
loop, for example.) Barista names the trace file
using a universally unique identifier (a "UUID"
generated for us with a Java function) plus ".trc"
and stores it in the Barista /workarea directory.

After tracing through the desired processing steps,
choose the menu item again to stop the trace
and respond to the dialog. If the trace was timed,
then you may optionally choose to invoke the
Performance Analyzer to immediately analyze the
trace file as Figure 7 shows.

View Namespaces
Similar to the View Dump option, View Namespaces
presents a tree view of the GlobalNamespace and
GroupNamespace folders, which expands to display
the alphabetically sorted contents (see Figure 8).

Summary
As robust a tool as the Barista Application
Framework is, it is even more powerful and
valuable to the developer with its new debugging
features. You now have the tools you need to
track and monitor your applications as they
interact with the Barista Framework. Using
Barista is better than ever so add it to your toolset
and enjoy the easy and efficient way it can help you
be more productive in support of your customers.

Figure 6. Starting a trace

Figure 7. Finishing the trace

Figure 8. Result of Barista’s View Namespaces menu option

Read Tuning the Performance Analyzer at links.basis.com/05tuning

Find additional Barista resources at links.basis.com/baristaref
•
•

http://links.basis.com/05tuning
http://links.basis.com/baristaref

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

By Brian Hipple
Quality Assurance
Supervisor

f you are displaying a report
in a BBj® application, then you
have probably taken advantage
of the BBJasperViewer

functionality. The BBJasperViewer is
a utility that allows end users of BBj
applications to view and interact with
the JasperReports engine, an open
source Java reporting library. Reports
designed with the WYSIWYG iReport
open source, cross-platform report
designer rely on the JasperReports
engine to generate the report. BASIS
built the original BBJasperViewer,
found in earlier versions of BBj, around
a Jasper Java class. This became
problematic when BBj introduced the
browser user interface (BUI) because
it could not utilize Java client objects
in this environment. To overcome
this limitation, BASIS rewrote the
BBJasperViewer utility in pure BBj code
and released it in BBj 12.

Can BUI use Java objects? On the
server, yes, on the client, no! Java
code requires a Java Virtual Machine
(JVM) so without it running on the
client, Java cannot run. The client only
needs a browser to run BBj code in
BUI since one of the great benefits of

BBj is that it translates code into the browser-rendered HTML, JavaScript, and CSS.
All smartphones, tablets, and other mobile devices include a browser, thus making
BBj a truly multi-platform, “write once run anywhere” language. It was therefore only
logical to use BBj to create a BUI compatible viewer for JasperReports. Since BBj is
an object-oriented language, it was easy to translate much of the Jasper Java Viewer
object-oriented code into the BASIS language. Much of this code deals with displaying
the report in the viewer. The BBJasperViewer obtains a PNG image for the report
from the Jasper API, translates it into a BBjImage via the BBjImageManager and then
subsequently displays it using a BBjImageCtrl. The end result is a perfectly displayed
report in your browser that is fully interactive, as shown in Figure 1.

 I

Customizable Mobile Report Viewer
BBJasperViewer Becomes Highly Customizable and Goes Mobile

Figure 1. BBJasperViewer running in a web browser

> >

Development Tools

79

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc80

Not only does this new BBJasperViewer utility version retain all existing functionality, BASIS added new features
and functions as well as an enhanced user interface. More control over the viewer is now possible with new
methods such as being able to set the initial zoom rate and page number. A new tool button saves the current
report page as a PNG image to better share information from the report with others. For example, a department
manager reviews a sales report and sees a transaction that is important for the owner of the company to review.
Now what? The manager can simply create an image of that particular page and send it by email as an attachment.

To improve the user experience, BASIS also updated the user interface, shown in Figure 2, to include a new child
window that houses the various tool buttons - updated with new graphics - that manipulate the report.

Figure 2. New user interface

Programmatic access to these controls is now possible, making the viewer highly customizable by BBj applications.
One particular BASIS customer has customized their viewer by removing the ability to save the report to Google
Docs from the [Save] BBjMenuButton. In addition, developers can add any BBj control to the toolbar child window,
further customizing the viewer to meet the needs of their application. For a really useful example, have a look at
Figure 3, which shows the code that adds custom email and fax toolbuttons to the BBJasperViewer toolbar and sets
the appropriate callback routines. The developer then adds the backing code to send the current report to one or
more email addresses selected from a list and the modification is complete!

In addition to these enhancements to the BBJasperViewer, BASIS enhanced the BBJasper utility as well. Beginning
in BBj 13 and higher, the utility adds the ability to fill a report with data from a ResultSet, making it possible to use and
display Jasper reports in applications without using SQL or SPROCs.

Development Tools

Figure 3. Adding the custom email and fax toolbar buttons to the BBJasperViewer window

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 81

The code in Figure 4 is an example of this new feature.

• Review these features in the online docs at links.basis.com/basishelp
• Read these BASIS Advantage articles
 • Jazz up Your Applications - Seamlessly Embed JasperReports at links.basis.com/09jasperreports
 • New BBJasper Output Types, Including the Cloud! at links.basis.com/11bbjasper
• Download the sample code referenced in Figure 3 at links.basis.com/12reportviewer-code

Development Tools

Figure 4. Using a ResultSet to construct a JasperReport

Summary
What started out as a rewrite to get the report viewer to work in the BUI environment has turned into so much more. BASIS
now makes it easier than ever to incorporate your application’s custom reporting needs, no matter what environment your
application runs in. What are you waiting for? Realize the power of BASIS’ BBJasper application building block utility today,
available in preview beginning with BBj 12.10 and in full release in BBj 13!

http://links.basis.com/basishelp
http://links.basis.com/09jasperreports
http://links.basis.com/11bbjasper
http://links.basis.com/12reportviewer-code

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Code completion is a significant memory and time-saving
tool: There is no need to turn away from your work to
consult documentation on a web page or in a book. Code
completion puts the information you need right inside the
editor in the most convenient way possible. The BASIS
IDE ships with code completion databases for Java and all
the classes in the BBj API and provides code completion
assistance for both languages.

If you are still running version 1.6, jump ahead of the game
and update to 1.7 now before the clock runs out. BASIS has
made the upgrade so you can do so without any last minute
crisis. Go to Oracle’s site and upgrade today!

id you know the BASIS IDE has been updated
to support Java 7? Oracle has announced that
support for Java 6 will cease in Q1 of 2013
(www.oracle.com/technetwork/java/eol-135779.html)

so the IDE is ready for 7! Are you ready?

In this article, we’ll review one of the most apparent
changes – full support of code completion for Java
1.7-specific objects. Java version 1.7 introduced a new
class, java.util.Objects, with static utility methods for
manipulating Java Objects.

Figure 1 shows the beginning of a BBj® program that calls
out this new Java class. The USE statement makes
java.util.Objects available to the BBj code, without
errors appearing in the editor.

When you reference Java classes in your code, the code
completion popup window connects to a new database
that knows all about the latest additions to Java 7. Code
completion is triggered by typing the '.' period character
after the name of an object variable or a Java class. The
popup window presents a list of all the members and
methods available to that class, including ones you may
not have seen before. Simply select the one you want with
the mouse or arrow keys, then click the mouse or press
[Enter] and see the method appear in the editor at the
cursor position.

Download Java 1.7 JDK from Oracle at bit.ly/bMkbpo

Figure 1. Code completion popup for the Java 7-specific Objects class

 D

By Mike Phelps
Software Programmer

BASIS IDE in Java 7th Heaven

82

Development Tools

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/eol-135779.html

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 83

EMS Prescribes BUI to
Reduce Healthcare Expenses

By Susan Darling
Technical/Marketing Writer

ising costs are plaguing most industries across the
country. Even in the healthcare world, with reform
around the corner, the need to reduce costs is growing
as fast as the unknown future that looms over the

horizon. For one insurance payor, the BASIS browser user
interface (BUI) was the clear answer, providing a solution that
not only accomplished their goals of accessibility, but helped
deliver tremendous cost-cutting savings.

PATIENT
 • A large state healthcare department

VITALS
 • Works to assure access to quality health services at all
 levels of need and life stages

 • Estimates they will serve nearly two million people
 sometime during their lives

 • As of July of 2011, serves well over 360,000 people across
 the state through 390 community agencies, 84 private
 hospital inpatient units, 157 community residential
 programs, 674 adult care facilities, and 89 adult family homes

 • Runs the DIAMOND 725 solution written in PRO/5® with
 about 200 concurrent users

SYMPTOMS
 • Providers were unable to determine patient eligibility
 before rendering services

 • Treatment delayed or potential costs incurred under
 dispute for both the State and the Provider

 R
TREATMENT PLAN
Reducing rising costs in the healthcare industry is generally
out of reach, but this payor saw that they could reign in
the costs by not paying the overbilled health care services.
While enforcing the contract limits in their process, they also
wanted to empower providers with a way to verify eligibility
before rendering the services, resulting in reduced billable
services and saving scores of dollars. All achieved through
the provision of up-to-date information to the provider at the
point of delivery of the services.

DIAGNOSIS
Looking at their Treatment Plan, the solution needed to be
 • Accessible via the Internet
 • Cross platform
 • Resource efficient
 • Easy to maintain
 • Intuitive for users
 • Easy to implement/train
 • Cost effective
 • Technologically compatible with their current hardware
 and software, DIAMOND 725 built on PRO/5

PRESCRIPTION
EMS Healthcare Informatics President and CEO Dave
Cominsky and Senior Software Engineer Karin Parker,
along with the State agency’s IT director, attended BASIS’
TechCon2011 where the browser user interface debuted.
A few months later, at the DIAMOND Users Group, the
three again saw BUI in action and learned more about its
implementation. When the IT director approached EMS
about their growing service limitation need, discussions
began. Parker explains,

Partnership

“The idea came to mind of a web portal that we had heard
about when we attended TechCon. I was not familiar with
GUI development but it was easy enough to harvest the
Business BASIC logic from our business app.”

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Figure 1. CUI version of the claim history

Extending DIAMOND 725 to a BUI solution breathed new life into the legacy product
and handily met the original requirements –

 • Deliver cross-platform browser access

 • Preserve existing business rules

 • Easily deploy with a familiar and intuitive interface

 • Use current BASIS technology available at no additional charge making it cost
 effective (current on software maintenance) + containing costs with a small amount
 of GUI programming required to deliver the solution

COURSE OF TREATMENT
With the PRO/5 DIAMOND application running IBM AIX on the database or production
server, EMS set up a second server with Linux to run BBj®, delivering GUI as an
application layer with the business logic they harvested ‘as is’ from PRO/5. The PRO/5
Data Server® became the gateway to access the production data on the AIX server
from BBj. A third server hosted LDAP and Web Server tasks to deliver the face of the
application via BUI to the providers’ desktops and mobile devices. Figure 2 illustrates

84

Partnership

With revived faith in DIAMOND 725, EMS resuscitated the application by writing and
deploying it in BUI, providing access via a provider portal to view claim history. For the
sake of user familiarity and ease of implementation, Parker designed the BUI screen to
look similar to the CUI screen shown in Figure 1.

this configuration. BASIS LDAP
support allowed EMS to write a small
user validation front end so when
providers go into the portal, they are
prompted to log in before the one-
page BUI app launches. Now with
very minimal training, they can look
up a name or subscriber number
to view claim history and verify if a
service would be covered before ever
rendering it.

The beauty of BUI is that providers
can easily log in from any browser-
compatible device to the portal
as shown in Figure 3 and do so
without having to install any JVMs
or additional third party programs on
their device. According to Parker,

Figure 2. Delivering PRO/5 data to BUI

“They wanted to use Internet
Explorer 8 so we accommodated
them and added the Google
plug-in, and also have it running
for use in Mozilla FireFox and
Google Chrome.”

While BUI also gives EMS the CSS
functionality to one day change the
look and feel of the application,
they felt delivering screens similar
to the look of the legacy CUI app
maintained a familiar user experience
and met their goals of “intuitive” and
“easy to train/implement.”

TREATMENT RESULTS
Since the BUI app uses data from
the actual adjudication database,
the healthcare providers now have
up-to-the-minute service eligibility
information, not day- or week-old
information. Providers in any
location have access to summarized
patient service history and can
make informed decisions regarding
future authorizations. In addition, by
determining which patients need
pro-active billing, the providers will
see an increase in their cash flow.

From a licensing perspective, the
BUI deployment only required an
additional 25 concurrent user licenses
as no more have actually logged in at
any one time, even though there are
500 active provider accounts. Only a
single production license was needed
to power up to 200 PRO/5 sessions
and the providers’ browser access.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

TIME FOR A HEALTH CHECK?
If you have a similar diagnosis requiring cost savings, greater efficiency, and
improved productivity, then perhaps BUI could be the very prescription to
ensure the continued health of your business application. A pain free, minimally
disruptive BUI procedure could be just the plan for the recovery of your fiscal
health. Check it out today!

BUI the wonder drug was truly the right Rx. As Cominsky recaps,

Watch the Java Break that featured this success story in greater detail and
see it in action at links.basis.com/jb-ems

85

Partnership

EMS Healthcare Informatics, based in Clarence, New York was
founded in 1996. EMS provides middleware applications along with
programming and implementation services to the healthcare industry.
More than 1,000 users run their
solutions and EMS supports several
major customers running DIAMOND
725, written in PRO/5 the late 1990’s.
www.emscorp.biz

Figure 3. BUI screens in each of the browsers; Mozilla Firefox, Chrome, and Internet Explorer 8

Register today
links.basis.com/tcreg

go from this...

...to this!

Attend this all new
training class

May 17th

 after TechCon2013

Learn how to

Make
Your Web App

Sizzle With CSS

“The State was establishing critical service limitations for the first time and
had to have a way for the doctors’ office to access real-time decision making
information. The BASIS team was able to guide us through the process
of using state-of-the-art technology that meshed Internet connectivity to
legacy PRO/5 data. The resulting BUI app was well received and completely
relevant to the success of the State initiative.”

http://links.basis.com/tcreg
http://links.basis.com/jb-ems
http://www.emscorp.biz/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

DBMS

 A

By Jeff Ash
Software Engineer

BASIS SQL Gets Even Better

86

s databases evolve over the years, it often becomes necessary to add SQL
functionality. While SQL is a relatively standard language for querying databases,
various DBMS vendors often add syntax to their SQL not supported by all databases.
BBj® now boasts new SQL support for several SQL features supported by other

databases, as well as significant improvements to the way it handles SQL views.

Execute SQL/MySQL Script
The Enterprise Manager now allows an administrator to execute an SQL script on any
BBj database. Script files should be plain text and contain one or more SQL statements,
terminated by a semicolon and a new line. Statements can include CREATE and DROP
statements for TABLE, VIEW, PROCEDURE, INDEX, and TRIGGER as well as CALL,
INSERT, UPDATE, DELETE, ALTER, GRANT, and REVOKE statements. To execute a
script, click the button shown in Figure 1, located on the database Information tab.

Figure 1. Execute an SQL script file

This powerful feature also includes support of most MySQL syntax for creating, modifying,
and populating tables so administrators can easily import MySQL database exports into a
BBj database. When importing from a MySQL script, set the “CREATE TABLE File Type” to
ESQL as shown in Figure 2.

Figure 2. CREATE TABLE File Type Setting

ENUM Type
BBj 12 now supports the use of the ENUM type (Enumerated Type) when creating a table.
Note that this feature only works with ESQL tables as it relies on ESQL files’ constraint
capabilities. An ENUM type column's values are restricted to a set of explicit values
specified at the time of table creation. For example, the following statement creates a table
with an ENUM type:

CREATE TABLE my_table (id INTEGER PRIMARY KEY, gender ENUM ('M', 'F')) ESQL

This next statement generates an error because 'Q' does not meet the criteria for the
enumeration:

INSERT INTO my_table VALUES (1, 'Q')

This statement will succeed:

INSERT INTO my_table VALUES (1, 'M')

The new ENUM type guarantees data integrity as only valid information may be written to
the database.

REPLACE Statement
The REPLACE statement works just like INSERT with the exception that if the value
specified for the primary key in the REPLACE statement already exists, it simply replaces
the existing record with the new record specified in the REPLACE. For example, if ID is a

http://en.wikipedia.org/wiki/Enumerated_type

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 87

DBMS

primary key, the first statement would insert a new record
because it is new, while the second would change the
NAME to John.

REPLACE my_table (id, name) VALUES (10, 'Jeff')
REPLACE my_table (id, name) VALUES (10, 'John')

Using REPLACE is a great timesaver for developers, as
previously this would require one of the following multi-step
processes to accomplish the same thing.

1. Execute a SELECT statement to determine if the record 	
 already exists

 • If the record exists, execute an SQL UPDATE 	 	
 statement

 • If the record does not exist, execute an SQL INSERT 	
 statement

2. Attempt to insert the record by executing an SQL 	 	
 INSERT statement, trapping for an error

 • If the SQL INSERT failed because the record already 	
 exists in the table, execute an SQL UPDATE statement

DATEDIFF Scalar Function
The DATEDIFF scalar function returns the number of
days between two specified dates. Parameters can be
literal expressions or the name of a date type column; it
subtracts the second parameter from the first parameter.
For example, the following returns a value of 7:

SELECT DATEDIFF('2012-08-08', '2012-08-01')

Reversing the order of the parameters returns -7:

SELECT DATEDIFF('2012-08-01', '2012-08-08')

This simple-to-use scalar function makes it very easy to
perform this common date operation without the necessity
for writing any application code. Further, using a scalar
function to perform calculations makes it possible to use
the SQL statement in reports without the need for custom
report scripting.

Full Featured Views
Full featured views are a tremendous improvement
over the way BASIS SQL traditionally supported views.
Prior to full featured views, SQL views were limited to a
SELECT column list, list of tables, and a limited WHERE
clause. ORDER BY, LEFT JOIN, GROUP BY, etc. were
unsupported. However, full featured views support all
valid SELECT queries regardless of size or complexity
and were first available in BBj 12. By default, adding a
database to BBj configures that database to create
 full featured views. Figure 3 shows the setting
for enabling full featured views.

Figure 3. Enabling Full Featured Views in Enterprise Manager

The following example of a complex CREATE VIEW statement
now works in BBj with the addition of full featured views, it
demonstrates the power and flexibility of this new capability.

 CREATE VIEW my_great_view AS
 SELECT t.name,
 count(t.order_num) AS NUM_ORDERS
 FROM (SELECT trim(c.last_name) + ', '
 + c.first_name AS NAME,
 o.order_num
 FROM customer c
 LEFT JOIN order_header o
 ON c.cust_num = o.cust_num) t
 GROUP BY t.name
 ORDER BY t.name desc

Summary
All currently maintained database management systems
evolve and grow over time to include new features, new
syntax, and improvements to existing functionality. Because
BASIS is always listening to customers for ideas about
improving our products, count on more improvements and
new features to the BASIS toolset. The addition of ENUM,
REPLACE, DATEDIFF and full featured views gives BBj
developers several more tools to use when developing
database applications. Please keep the ideas coming!

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

he BASIS Custom Installer (BCI) continues its evolution towards a fully-
featured installation program, not only for BASIS products, but for customers’
applications as well. It is very appropriate that the word ‘custom’ is included
in the name of this installer. BASIS wrote the Installer with a great deal of

flexibility for the developer and it is completely configurable in all aspects of installing
any BBx®-based application. More explicitly, the developer can determine which
commands to invoke and under what conditions, what files to install, and which BASIS
installation wizards to run and in what manner. All of this functionality is specified in
either an installation response file or an instructional XML file. These files include new
options that BASIS incorporated into the latest version of BBj®.

Recently, the BASIS marketing team came to the engineers with an idea for
a campaign to promote our ERP product written in BBj – AddonSoftware® by
Barista®. They wanted the user to be able to download, install, configure, and run
AddonSoftware without any interaction. The intended audience for the promotion
would likely be unfamiliar with BASIS or our products, so it was imperative that this
was a simple one-click process. They did not want any prompts to appear requiring
users to make otherwise typical selections – the Java version, install directory, license
registration, license manager, or how to configure and start the BLM or BBj Services.
The team wanted it all to work and be configured automatically on all BBj-supported
operating systems. Was the BCI up to the task?

Most definitely the BCI could handle the challenge, however, along the way we found
opportunities for improvement that not only met the requirements of our marketing
team, but also would offer great benefits to the BASIS community at large.

Enhancement #1 - Progress Mode
The BCI gives the choice to configure the installation wizards to run either interactively
or silently via the response file. Since we definitely did not want the installation to be
interactive, we chose the silent option. What we found out with this option was that
depending on the system, it could take several minutes for BBj and AddonSoftware
to be installed, without giving users any sense of progression. Here was the first
opportunity for enhancement. We added a new progress mode to the response file to
display a progress screen in both GUI and CUI. This new option provides the end user
an indication of the progress of the installation and improves the user experience. An
example of the new progress mode is shown in an excerpt of a response file in Figure 1.

 T

By Brian Hipple
Quality Assurance
Supervisor

Easily
Install
Your
Apps
With
the
BCI

88

Figure 1. Example of the response file that sets the progress mode for the wizards

Development Tools

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 89

This ended up being a great win-win experience as “eating our own dog food”
gave us the chance to “taste” some of the same BCI hurdles as our customers
and implement solutions that benefited us in our immediate need, and BASIS
customers down the road.

Development Tools

Enhancement #2 - License Installation
Another ability we needed was to have a temporary license installed by default. To
accomplish this, the installer now can utilize a BASIS license file in the installable jar
file when it’s named basisdemo.lic. When found, this license installs automatically
and BBj and the BLM configure appropriately to utilize it. You can easily add a license
file to an existing installation jar via the syntax and example shown in Figure 2.

<JAVA_HOME>/bin/jar -uf <BASIS Installable.jar> basisdemo.lic

/usr/local/java/bin/jar -uf
BBjBaristaAddonIDE1201_08-13-2012_1245.jar basisdemo.lic

Figure 2. Generic syntax (top) and example (bottom) command for adding a demo license to an installation jar

Enhancement #3 - Platform Specificity
We needed more granular specifications for the Java directory, installation directory,
and configuration options. Response file values were not OS specific and only gave
the developer one chance to set them, regardless of the platform. Therefore, we
added _WIN and _NON_WIN suffixes to the desired property keys for Windows-
and non-Windows-specific operating systems. Now, we can include the options for
different platforms conveniently in the same response file. Figure 3 shows some of
the OS-specific property keys.

Figure 3. OS-specific property keys for setting specific values

Enhancement #4 - Auto Execute
Lastly, we needed to run the AddonSoftware application after all the components
had been installed. This was previously possible by specifying a BBExec node in the
instructional XML file: custominstall.xml. However, we thought this might be an
option that our customers would frequently want to take advantage of so we added
this ability to the more accessible response file as shown in Figure 4.

Read Custom Apps Install –
Easy as 1- 2- 3! at
links.basis.com/11custominstall

Figure 4. Defining a BBj program to run after installation completes

But Wait, There’s More...
While our own marketing campaign
was the catalyst for this string of
improvements, shortly afterwards
a customer came to us with some
additional BCI requirements. They
needed to 1) install their own product
outside of the BASIS directory and
2) configure the uninstall wizard not to
uninstall their product.

Seeing these customer requirements
as viable enhancements, we added
the ability to identify the installation
drive via a new $InstallDrive variable
so that on Windows, for example, the
developer could provide a full path in
order to create shortcuts to their product
offerings. In order to be exempt from the
uninstall process, we added the
uninstall=”never” attribute on both
the suite and feature nodes in the
custominstall.xml file.

Summary
“So what,” you ask? Two things are
worth noting. Firstly, the BCI is a
very powerful and useful tool and it is
included with BBj obviating the need
to purchase a third party tool. If you
are not already taking advantage of it,
it might be time to exploit it. Secondly,
and perhaps more importantly, if you are
using the BCI and it currently doesn’t
have the features you want, don’t be
shy. Let us know what you need and
if it makes sense, we will add it to this
powerful building block!

http://links.basis.com/11custominstall

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

t’s 3:00 A.M. and you awaken to the sound of a text
on your phone. Is it the kids? Is it your mother-in-law?
You focus on the bright screen in a pitch black room
and discover it’s neither the kids nor your mother-

in-law. The server is down at work and it requires your
immediate intervention. In a half-awake stupor, you drag
yourself to your laptop and discover the server is not running
at all. You think, “Wonderful, time to rush into work!” Just
how long will you be down?

At BASIS, we run all of our servers – production, build, web –
in the cloud, specifically the AWS (Amazon Web Services)

cloud. Among many other benefits, this prepares us for a
quick recovery from text messages like this and allows us to
finish a good night’s sleep. This article reveals how we have
prepared ourselves with the use of the latest technology
from both the industry and BASIS.

What is AWS?
The AWS cloud is a collection of data centers that run virtual
machines and charges for runtime, storage, and network
usage. The cloud provides flexible configuration and backup
possibilities that in-house LANs don’t normally offer. When
a cloud machine or “instance” goes down, it takes only a
matter of seconds to create another identical instance from
an “AMI” or Amazon machine image. The administrator
saves permanent data on a virtual hard drive or “volume”
and attaches it to an instance. The flexibility of virtual
machines relieves system administrators from any concerns
about hardware and allows them to focus on server and
software configuration. As with the virtualization of so many
other objects, physical limitations no longer apply: You can
easily have 1 machine or 100 machines, all identical.

 I

By Shaun Haney
Quality Assurance
Engineer

90

Are You Prepared for Cloud Failure?

System Administration

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 91

Duplicity is incremental so it requires a rebuild that could
take a few hours.

In addition to maintaining copies of data, BASIS backs up all
AMIs to other regions. Currently, Amazon does not provide
a convenient way to back up machines across regions, so
we have developed our own process. Basically, we copy
the AMI’s root volume to another region and then create a
new AMI from that volume. Since AMIs change so seldom
compared to live data, we only make backup copies of AMIs
as we update them.

A Quick Recovery
BASIS employs these procedures daily in anticipation of a
major outage. If or when this inevitable event might occur
and our production server fails, we can switch (or “fail
over”) to another region with a quick recovery time of less
than 5 minutes.

To execute this failover, the first step is to change the
production server’s DNS record so that it points to an IP
address in the new region. Then we set our DNS up with
a TTL of 300 seconds (5 minutes) and launch an instance
of the AMI we copied over in the new region and attach
the backup volume to the instance. Next, we rsync our
replicated data to the backup volume and then assign the IP
address to our instance that corresponds to the DNS record
we just changed. Finally, we start up all the necessary
services on our new instance and we’re back in business.
The entire process takes less than 5 minutes!

Conclusion
While running all BASIS’ servers in the cloud allows us to
continue business regardless of whether our employees
are in the building, a cloud outage has the potential to bring
business to a grinding halt. BASIS, however, incorporates
geographical redundancy into its maintenance procedures
as a strategy for quick recovery. This strategy ultimately
allows BASIS to continue business as normal and serve you
much more effectively than if we maintained all our servers
on a single LAN within our building.

A cloud outage can result in immeasurable loss of money
and data. Geographical redundancy is a vital strategy for
quick recovery in the event of such a loss. Running all
BASIS servers in the cloud allows us to continue regardless
of whether our employees are onsite or virtual. This
strategy ultimately allows BASIS or anyone to continue
running business as normal and serve customers more
effectively than from servers maintained on a single on-site
LAN. Take it from us, setting up servers with redundancy
in the cloud IS the best and most effective way to be
prepared. If you are looking for a robust, affordable ERP
cloud solution, you would be hard pressed to find one that
is more architecturally reliable and redundant than the
AddonSoftware® Cloud solution, because it comes with this
BASIS tried-and-tested robust redundancy and recovery
system, right out of the box!

System Administration

Amazon has several data centers around the world; in the
US - California, Oregon, and Virginia; and worldwide - Brazil,
Ireland, Japan, and Singapore, etc. If a server fails, one can
usually solve the problem by connecting to a still-running
instance and performing remote administration. It might be
necessary to launch a new instance of the server if Amazon
has experienced failures with its own (non-virtual) servers
that caused an entire region or availability zone to become
unavailable (see bit.ly/wXsGyz). Regions and availability
zones becoming unavailable is problematic and extremely
expensive for businesses.

Earlier this year on June 29th, the Washington D.C. Derecho
storm (abcn.ws/PUBe2I) caused a power failure at one of
Amazon’s data centers (zd.net/KNQJRz). The power outage
directly impacted companies like Netflix, Instagram, Pinterest,
and Heroku. In particular, Netflix’s streaming services were
out for three hours at an extremely high peak usage time.
During these failures, large service providers not only must
recover from the outage, but also field a tremendous volume
of customer service calls. In general, for companies that
operate in the cloud but aren’t prepared for regional outages,
such an outage means the inability to conduct business for
the duration of the outage and can also mean loss of data.

Be Prepared
So exactly what does it mean to “be prepared” for a cloud
catastrophe? In short, being prepared means keeping
redundant copies of data over multiple regions. BASIS
employs three methods for backing up data and copying
machines across several regions to maintain redundancy.

The first backup method BASIS uses is our own BBj®
replication to copy our databases and files to machines in
other regions. Configurable in Enterprise Manager, replication
creates up-to-the minute copies of our data and BUI
programs on several machines in other regions. Should we
ever experience a failure in California, for example, we can
recover from any one of several copies of our important files
created at the time of the failure.

The second method backs up data using the Linux utility
‘rsync’ to copy the BASIS production system’s drives each
night to a failover copy of production. Our production machine
is in a data center in one region separate from the region
of the failover machine’s data center. This means if we
experienced such an outage, we could quickly launch the
failover machine in the other region, which becomes our new
production machine.

The third method BASIS uses is backups of data using a
Linux backup utility called Duplicity. While the other two
methods keep a single copy of data at a particular point in
time, Duplicity keeps an incremental backup spanning a
month’s time. This way, if we find our up-to-the-minute and
24-hour-old data are faulty, we can recover from an earlier
period of time when our data is still good. While data from the
other two methods of backup is available instantly, data from

Read BASIS Survived Amazon Outage at links.basis.com/12survived

http://links.basis.com/12toc
http://abcnews.go.com/US/derecho-storm-ravaged-washington-area/story?id=16696593#.UDKfuY1ttfc
http://www.zdnet.com/aws-outage-shows-backup-cheapskates-7000000096/
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://links.basis.com/12survived

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

In the fall of 2009 at TechCon in Albuquerque, we announced
the Java Break concept and logo, printed on ceramic coffee
cups, and distributed them with a schedule of the first Java
Break series.

Now, three years later, we have registered a total of nearly 3,200
attendees for more than 60 sessions. Combining input from our
developers and end users, and comments in the discussion
forums with new product features and industry trends, we deliver
a wide range of topics to an audience that now has the time,
interest, and opportunity to attend. The result – Java Break
topics that cover the practical applications of BASIS technology
including language/interpreter, development tools, database
management, system administration, utilities, and the application
building blocks of the AddonSoftware® by Barista® ERP solution.
In our most popular sessions we highlighted enabling data
replication and auditing for your PRO/5®, Visual PRO/5®, and BBj
apps; adding browser access to PRO/5 data, and imparting email
functionality to your PRO/5 apps. Many organizations use the
BASIS Java Break as semi-monthly opportunities to bring their
development team together for collaboration and brainstorming
while viewing the session.

Looking back at the goals of our solution, we’ve succeeded...

...bite-sized presentations
 Generally no more than 30 minutes

...accessible from work, home, or hotel
 Web-based sessions only require an Internet connection

...from any city
 Global coverage with attendees from Argentina, Australia,
 Bangladesh, Bulgaria, Canada, Chile, Colombia, Dominican
 Republic, England, Germany, Guatemala, India, Italy,
 Macedonia, Mexico, Netherlands, Nigeria, Poland, Puerto Rico,
 Serbia, Sweden, Switzerland...
 For some it is an evening's diversion, though for our
 Australian friends, it is ‘bloody early.’

...on your choice of viewing device
 Viewable from your desktop, laptop, mobile device, or
 from your large screen TV using Airplay for iPhone/iPad

few years ago, we realized BASIS was facing an
information delivery problem - too much content to
deliver in a timely manner, to a “too busy” audience
located around the globe.

While we were successful with TechCons and TechViews, they
really only reached a very narrow sector of our community.
TechCon conferences continue to present great opportunities to
speak face-to-face with our partners about the ever-expanding
BASIS technology, features, and functions built into the product
set, but are only held every 18-24 months. How do we reach
our community with more current and frequent information?
BASIS TechViews took mini sessions to cities around the
U.S. but were difficult to target geographically to maximize
and justify one-day attendance, and were expensive for us to
conduct with any frequency. How do we host regular ‘bite-sized’
presentations that wouldn’t monopolize too much time so that
our community could attend while at work, at home or in a
hotel; from any city across the country or around the world?

The solution to this dilemma came in the summer of 2009.
We decided to jump on the webinar bandwagon and host
sessions on current topics for about 30-minutes during which
our attendees might enjoy a cup of coffee...a virtual “coffee
break” of sorts. We tossed around several names but “Java
Break,” with our Java-infused BBj® product as the headliner,
seemed to be the obvious choice. Committing to host or “serve
up” these breaks bi-weekly, we designed them strategically to
educate and inform resellers and end-user developers alike
using demonstrations and presentations of the latest BASIS
technology. We settled on the recurring start time of 10 AM
Mountain Time to conform with the typical work day in the
continental U.S. and also to be reasonably convenient to our
customers who span at least 10 time zones.

By Paul D. Yeomans
Vertical Market
Account Manager

 A

Java Breaks Deliver
Solving the Information Delivery Challenge

92

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 93

...on demand
As the Java Breaks have evolved, so have their longevity,
adding anytime ease -
 All Java Breaks are available to the community anytime
 from either basis.com/java-break-basis or the BASIS
 YouTube channel. In fact, the YouTube channel alone
 has nearly 10,000 video views with dozens of
 subscribers, and counting.

A most unanticipated and invaluable resource from these
Java Breaks is the live question and answer sessions that we
record, transcribe, and post as a Google Doc to the archive
page (basis.com/java-break-basis). These Q&A sessions give
us real-time input and interaction with our community to help
guide the direction of future Java Breaks and potentially, our
products. Also, posting the Q&As in Google enables us to
easily edit and update as we enhance our technology.

Have Java Breaks been worthwhile to the BASIS community
from the customer’s perspective?

If you have not yet joined us for a live Java Break, check out our schedule at links.basis.com/events
and register there or from our Monday morning email announcement. In the meantime, catch up on
past Java Breaks at links.basis.com/javabreak!

Here are just a few comments we received:

 Drowning in unfinished projects?

Don't off-shore, near-shore, or out-source...
 Smart-source with

Smart-source services provide both ISVs and corporate IT departments with trained, certified, and qualified
software architects and developers staffed through the global network of BASIS partners and subsidiaries.

 US - BASIS International Ltd. info@basis.com Europe - BASIS Europe Distribution GmbH eu@basis.com	

 • Managed in English through BASIS US and Europe

 • Committed to
 • Globally unified quality standards and
 project management guidelines
 • Legal peace-of-mind, thanks to US and EU
 contract standards

• Develop, maintain, and migrate all
 Business BASIC-based applications

• Outsource IT services permanently

• Support all BBx® generations –
 PRO/5®, Visual PRO/5®, BBj®, and Barista®

“It was great to see how easy it is to serve and consume Web
services. Thanks for these Java Breaks. They are wonderful.”

“Preserving Modifications Through Upgrades was very well
done and answered several questions I had. It sparked new
ideas of what I can do with Barista”

“Thank you for providing the time and facilities to get this
great information out.”

“This Java Break certainly stirred up a nest of worms that are
already swimming around in my head. For that, I am grateful!!”

“Writing Your Web App in the Latest BBx - The CSS was
exciting and very enjoyable. I can’t wait to get started.”

Thank you for ‘taking a Java Break’ or two with us. Together, we’ve
clearly brewed a smashing success! Information delivery challenge
SOLVED.

http://www.youtube.com/user/BASISIntl
http://www.youtube.com/user/BASISIntl
http://links.basis.com/events
http://links.basis.com/javabreak
http://www.basis.com/java-break-basis
http://www.basis.com/java-break-basis

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

 W
Wikipedia defines Javadoc as “a documentation generator from Sun Microsystems [now Oracle] for generating API
documentation in HTML format from Java source code. The HTML format is used to add the convenience of being
able to hyperlink related documents together. The ‘doc comments’ format used by Javadoc is the de facto industry
standard for documenting Java classes.”

With the help of a new BASIS utility, BBjToJavadoc, and a little effort on your part, you now have a second motivation to put
comments in your code, because BBjToJavadoc also gives you the ability to rapidly create API documentation from your BBj®
application code using this new BASIS-supplied Javadoc documentation generator.

Figure 1 shows an example of doc comments in BBj code. In this example, the “block tags” are @param, @return, and @see.

Figure 1. BBj code incorporating doc comments

BBj Documentation is as Easy as JavaDocs

By Ralph Lance
Software Engineer

Development Tools

94

http://en.wikipedia.org/wiki/Javadoc
http://documentation.basis.com/BASISHelp/WebHelp/bbutil/bbjtojavadoc.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

The resulting HTML generated would then look like Figure 2.

Figure 2. Resultant HTML API documentation example

With BBjToJavadoc, BASIS has made it possible for you to embed similar documentation comments in your BBj
programs and generate your own documentation in HTML Javadoc format. In particular, your BBj custom classes
can take advantage of some of the more advanced documentation capabilities, allowing you to navigate easily via
hyperlinks among your classes. Because the Javadoc engine from the Java JDK toolset is used in the process,
any valid document tag can be embedded in the doc comments.

Figure 3 is an example of a BBj custom dialog class with some doc comments that the Dialog Wizard embedded
for us. Follow the required few simple steps below to generate the corresponding Javadoc documentation.

Figure 3. BBj custom dialog class with embedded doc comments

Development Tools

95

http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc96

Step 1. Start the Wizard
To start the wizard, run the program
called BBjToJavadocWizardRun.bbj
located in the <BBjHome>/utils/
BBjToJavadoc folder.

Once the wizard launches (Figure 4),
stipulate where to store the generated
documentation and choose the level of
scope, or visibility, the documentation
includes - public, protected, or private.
Choosing a ‘private’ level of scope
documents everything.

Lastly, choose one or more non-
tokenized BBj source files to document.

Step 2. Set Options
After clicking the [Next] button, proceed
to the second screen (Figure 5) to set
options for the Javadoc program. Read
more about these options in the online
Javadoc documentation.

Step 3. Generate the Docs
Now, you are ready to generate
the actual documentation, so click
[Next] and then [Finish] to display the
completed screen shown in (Figure 6).
You have the option to show the results
of the generation immediately upon
completion.

If desired, the Wizard displays the
nicely structured HTML documentation
in your default browser (Figure 7).
You can easily navigate between the
different regions of the document - the
field summary, constructors, and the
methods themselves. Clicking the
hyperlinks for methods or fields in the
left navigation pane takes you to a copy
of the code that defines the entity.

So just that easily, the BBjToJavadoc
utility has done all the work for you,
simply creating a robust hyperlinked
documentation system derived from
your own code.

Figure 4. Wizard screen for Step 1

Figure 5. Wizard screen for Step 2

Development Tools

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Summary
BBjToJavadoc is a
documentation generator
from BASIS for generating
API documentation in HTML
format from BBj source code.
The HTML format is used to
add the convenience of being
able to hyperlink related
documents together. The ‘doc
comments’ format used by
BBjToJavadoc is the BASIS
standard for documenting
BBj custom classes. While
we can’t actually remove
the often neglected task of
documenting your code from
your ‘to-do’ list, this BASIS
building block utility makes it
as easy as possible for you
to write self-documenting
object-oriented code.

97

For more information, visit
 • BBjtoJavadoc - links.basis.com/bbjtojavadoc
 • Oracle Java API Documentation Generator - bit.ly/TFz1mJ
 • Oracle Javadoc Tool - bit.ly/9l0Dd6

Development Tools

Figure 6. Wizard screen for Step 3

Figure 7. Resultant HTML documentation

http://links.basis.com/bbjtojavadoc
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc98

In Terminal Server/Citrix deployments, there is greater overhead involved in the first
invocation of the JVM housing the DBMS, but marginally less memory used for each
subsequent invocation. One can only deduce a true picture of memory consumption
after adding five or more users. There is no sharing possible in the application server
JVM because each user/display must run in its own JVM. Of course, it is important to
remember that the maximum memory used by all concurrent users plus BBj Services
should not exceed the physical memory of the system.

What’s Needed to Run BBj?

Topology – The ability to distribute BBj database

By Bruce Gardner
Technical Support
Supervisor

ny system purchased ‘off-the-shelf’ today is powerful enough to run BBj® and its features. That dusty Windows XP in the
corner of your office likely has enough horsepower to run any thin client application developed in BBj. It is probably even
powerful enough to develop apps in the BASIS IDE or the Barista® Application Framework. But ask our sales or support
teams what the system requirements are for a full application deployment and they will tell you the same thing: “It depends.”

The fact is, there are simply too many variables involved in a BBj application deployment for our sales or support teams to provide
such specific information. This is true of any enterprise level Java- or .NET-based application: Only the application developer and
end user truly know the system requirements of a deployment.

The good news is that all the tools necessary to assess the requirements for your deployment are at your fingertips.

Q. What factors should I consider in a BBj deployment?
A. You need to consider these important hardware and software factors:

management, interpreter, and client functionality
across multiple systems (or ‘tiers’) means vast
varieties of application topologies. You will need to
consider the system requirements for all of the tiers
involved (see Figure 1).

Will your deployment be a single-tier CUI application
on a UNIX server with terminal emulator clients or
will it be a two-tier GUI deployment on a Windows
Terminal Server farm with RDP clients? The former
single-tier UNIX deployment actually requires
less memory than a similar PRO/5® deployment,
averaging only 2 MB for each additional user. The
latter 2-tier Terminal Server deployment could require
considerable system resources, depending upon the
memory requirements of the application itself and the
number of concurrent users. Three-tier deployments,
where the ‘Presentation Layer,’ ‘Application Layer,’ and
Data Layer’ all reside on separate systems – clients,
servers, or clusters of servers can have widely-varying
memory, CPU, and disk I/O requirements at each
layer. Disk I/O will be more of a factor on a Database
Management Server (DBMS) than an Application
server; an Application server will have greater memory
requirements than a DBMS server.

 A

For an in-depth discussion of different BBj deployment strategies, see Choices, Choices, Choices at links.basis.com/05choices.

Figure 1. Typical 3-tier BBj deployment in which layer interaction occurs over the network

Application – No two applications use the same amount of resources. A CUI data-entry program would have very low memory
overhead. Does your GUI application have a lot of forms or controls? If so, memory requirements on the client side could
be a factor.

Number of concurrent users – How many users do you anticipate will log in to your application in the peak hours on a given site?
Again, if your deployment is a single-tier CUI application, each additional user will have a minimal impact on system resources.

However, a Terminal Services deployment will be a bit more complex. Here, the ‘N+1 Rule’ is in effect, where the number of
JVMs invoked on the system will equal the number of logged-in users plus one extra JVM for BBj Services powering the DBMS.

http://links.basis.com/05choices

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 99

• Read the BASIS Advantage article Choices, Choices, Choices at links.basis.com/05choices
• Check out Microsoft’s free third party Sysinternals tools at links.basis.com/iydfu

Q. How do I determine the system specifications for my deployment?
A. Match your Test environment to the target Production environment and run it through its paces.

In an ideal world, all testing would occur in a test environment that exactly matches the target production environment. While
some developers have done a spectacular job of this, it can be an unrealistic and impractical goal for most. Where it is not
possible to match a test environment to a production environment, BBj, system, and third party tools can be used in the
test environment to extrapolate a relative and predictive baseline. The closer you match the target production environment
operating systems, topology, and workload, the more accurate your assessment. Use a meaningful approximation of the
application workload. A tight loop that executes thousands of reads and writes in a minute does NOT approximate user
interactive workload!

You will find that the data you collect in this process will inform your n-tier deployment decisions. For example: An interactive
data entry application will not be sensitive to network latency in 3-tier deployments, but it might make sense to combine the
‘application layer’ and ‘data layer’ into one layer for batch jobs and reports, taking network latency between the application and
DBMS servers out of the picture.

Q. What tools should I use?
A. The more, the better! Here are a few examples:

BBj tools – BBj’s Enterprise Manager can provide a great deal of information about the server deployment.

 • Memory Usage module – Provides real-time graph of current memory usage. You may also view your
 customer’s memory usage simply by pointing the module to a copy of their BBj logs.

 • System Logs module – Provides detailed, minute-by-minute, information on current memory usage and
 Garbage Collection durations. This information can help ‘tune’ memory-related Java arguments for BBj Services.

 • BBj Processes module – Provides a detailed view of the BBj processes currently running.

 • BBj File System module – Provides a detailed view of all files currently open on the server.

System tools – Know your target operating system and the tools that come with it. Utilities, such as ‘top’ on UNIX
and ‘Task Manager’ on Windows, can provide a great deal of information about CPU, memory usage, and disk I/O.
Once your test environment is in-place, incrementally add users and watch the resource utilization on the server.
After a number of users have been added with a simulated workload, you should be able extrapolate how much
CPU, memory, disk I/O, etc. will be utilized during peak production hours.

Third party tools – Third party tools, such as Microsoft’s free Sysinternals, can provide detailed information for just
about any metric you care to measure on a Windows system. Other third party tools can help simulate a production
environment by adding a non-BBj workload or simulating network latency.

Test programs – It is not always possible to approximate a realistic workload on a server but you can always write
programs that will: Simulate an interactive workload by spawning BBj processes, or write a program that performs
thousands of file operations to simulate a batch process.

•

•

•

•

Virtualization – While it has the potential to reduce cost, you must handle virtualized deployments carefully. Multiple guests

competing for resources on a single host server will have a negative impact on disk I/O and introduce network latency.

Network latency – As discussed in the Topology paragraph, multi-tier application deployments can place very different
demands on systems in the separate layers, depending on their function. However, the distribution of presentation,
application, and data functions to different systems necessarily means that the interaction between the layers will be ‘over
the wire.’ Network latency can be the most important factor in multi-tier deployments, and you should pay attention to the
latency effects between the layers.

What’s Needed to Run BBj?

Figure 1. Typical 3-tier BBj deployment in which layer interaction occurs over the network

Q. Should I re-evaluate system requirements as newer versions of BBj and Java are released?
A. Yes. Java and BBj are constantly changing. New Java/BBj features might require more or less resources. Optimizations are
always forthcoming as well; Java introduced dynamic memory allocation in Java 1.6.0_18, taking much of the guesswork out
of memory-related Java arguments for BBj Services. Recent filesystem refactoring in BBj 12.10 have resulted in much faster
concurrent file access.

Summary
There is no substitute for a real-world test that simulates the actual behavior of your BBj deployment. Only you, the developer,
can truly determine the specific needs of your application. A full understanding of the dynamic factors involved in all deployments,
coupled with accurate testing and use of tools, will go a long way towards determining those requirements.

http://technet.microsoft.com/en-us/sysinternals/bb545021.aspx
http://links.basis.com/05choices
http://technet.microsoft.com/en-us/sysinternals/bb545021.aspx

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

http://www.addonsoftware.com/
http://www.basis.com/erp

	Untitled

