
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 5 • A u t u m n 2 0 1 1

common feature of web browsers
is to allow the user to choose or
specify a document they would
like to see, and then open a

corresponding application or viewer for that
type of file. As websites continue to evolve
towards becoming applications and vice-
versa, more applications require the ability
to display a document where the type of
document the user will choose may not be
known beforehand. This functionality, known
as an application association, is already
contained in popular browsers.

Wouldn’t it be great if programmers could
leverage the browser’s functionality rather
than having to roll their own? Java provides
exactly this functionality through its
Desktop::browse() method, and Javascript
provides this functionality through Window.
open(). Leveraging these two technologies,
BBj® provides the BBjThinClient::browse()
method in GUI and BUI.

BBjThinClient::browse() in Action
So, what exactly does this new method
BBjThinClient::browse() do? Quite simply,
the browse() method takes a URL as a
parameter and opens that URL in a browser.
URLs most commonly reference pages and
files on the Web, but can also reference files

locally via the file:// protocol. Since BBj includes a Web Server, references to
files on the server machine can be a URL.

To illustrate this feature, run either of the “Browse - BUI” or the “Browse - GUI”
demos that are included with the BBj product when downloaded with the demo
checkbox selected (BBj 11.10 or higher). The demo presents three options for
opening a file. The first option is to specify a URL to the file, the second option
is to open a file from the machine that is running BBj Services (server-side),
and the third option is to open a file that resides on the same machine on which
the demo is running (client-side). Once a file is specified and the “browse() file”
button pressed, the file path is translated into a URL and the demo launches the
default browser with the URL. The browser uses its file associations to determine
the appropriate application for opening the file, and finally opens the file with
that application. Figure 1 shows the demo launching the native movie viewer
application when a .mov file is passed to the browse() method.

By using the browser in this way, BBj programs can use the browse() method
to open any type of file with the appropriate application without having to know
which file will be specified ahead of time. For example, the default browser on a
Windows system would likely open a new tab for an HTML file, launch Windows

 A

> >

By Shaun Haney
Quality Assurance
Engineer

New Browse Method Eases File Open Process

24

Language/Interpreter

Figure 1. Browse Demo launching a native application to view the selected file

Return to TOC

http://docs.oracle.com/javase/6/docs/api/java/awt/Desktop.html#browse(java.net.URI)
http://documentation.basis.com/BASISHelp/WebHelp/sysguicontmethods/bbjthinclient_browse.htm
http://documentation.basis.com/BASISHelp/WebHelp/sysguicontmethods/bbjthinclient_browse.htm
http://www.basis.com/v15-2011

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 5 • A u t u m n 2 0 1 1

Media Player for a .mp3 file, launch Microsoft Word for a .doc file, and launch Windows
Photo Gallery for a .png file. What application opens what file, however, is ultimately
in the hands of the user and how a file is opened is now outside of the realm of worry
for the application developer. In many cases, the need for developers to integrate file
viewers with their applications is gone.

Generally speaking, the default browser opens the specified URL and the file://
protocol specifies URLs for local file locations. However, the browse() method treats
the file:// protocol differently from other protocols depending upon the environment in
which it’s used:

 • The file:// protocol is unsupported within BUI programs where the underlying
 Javascript mechanism does not have permissions to access the client’s file
 system. Read on to learn how to overcome this limitation.

 • Associations for URLs with the file:// protocol may be handled by Java’s
 URI handlers rather than being launched with a browser.

To illustrate the browse() method launching an application without the help of the default
browser, enter BBjAPI().getThinClient().browse("file:///C:/program%20files/
basis/demos/adminapi/images/browse.png") in SysConsole on a Windows Vista
machine, which results in BBj opening C:\Program Files\BASIS\demos\AdminAPI\
images\browse.png with Windows Photo Gallery. In this case, Java’s URI handlers
determined the file association independently of the browser on the user’s system.

While the browse method delegates the task of opening files and greatly reduces or
even eliminates the need for handling opening files of different types in code, a nagging
question remains. Since every path passed to the browse() method must be in the form
of a URL, how does one create URLs for client-side files and server-side files? The
Browse demo comes in handy to answer this question since it contains code handling
all of these cases.

Forming a URL for client-side files is straightforward in GUI. The URL’s protocol is
file://, followed by a beginning slash if the path does not already begin with a slash,
followed by the path to the file using forward slashes as the path separator. Special
characters, the most common of which is a space, require appropriate encoding for
URLs. For example, if the client-side file resides at, C:\Program Files\basis\demos\
BBjThinClientBrowse\BUIBrowse.png then the URL will be
file:///C:/Program%20Files/basis/demos/BBjThinClientBrowse/BUIBrowse.png.

For server-side files, remember that every install of BBj comes with a Web Server (see
A Home (Page) in Every Port at links.basis.com/11homepage) and that it runs as part
of BBj Services on port 8888 by default on the server machine. Any file on the server
machine placed in <BBj Install Directory>/htdocs will be accessible at http://<server
name>:8888/files/<file name>. The Browse Demo copies the server-side file to the
specified directory under the htdocs directory and then forms the URL as described
above. Figure 2 shows the result of the demo program copying the selected server file

Figure 2. Browse Demo showing a server-side file in the client’s browser

For more information, refer to
online documentation

 • Desktop::browse

 • BBjThinClient::browse

to a directory hosted by the web server
and launching a new instance of the
client’s browser to display the file.

By way of example, if the file above
resides at
C:\Program Files\basis\demos\
BBjThinClientBrowse\BUIBrowse.
png on the server machine, the demo
program copies it to C:\Program
Files\basis\htdocs\WebServerDemo\
BUIBrowse.png, and the corresponding
URL becomes
http://<myserver>:8888/files/
WebServerDemo/BUIBrowse.png.

Opening a client-side file with the
browse method in BUI is much like
opening a server-side file except that
the file starts out on the client-side. To
view the file, it must be served up from
the server-side web server. So, the
first step is to create a BBjClientFile
for the file that is to be browsed. Next,
call the copyFromClient() method on
the BBjClientFile object to copy the file
to the server. The string returned by
copyFromClient() reveals the location of
the file on the server. Finally, copy the
file over to the htdocs directory for the
web browser to serve up.

Summary
Using the BBjThinClient::browse()
method provides application developers
the ability to present any BBj accessible
file to the user, both client and server-
side, without needing to determine
ahead of time which application needs
to be associated with the file for the
user to view its contents. The user’s
machine configuration determines how
the file will be opened and avoids the
need for the developer to provide this
knowledge from within the application.
This BASIS-supplied functionality
enables desktop and web application
convergence, allowing developers
to create applications that deliver
content in a greater variety of formats
regardless of the mechanism of their
deployment. BASIS continues to deliver
on its promise of “Write once, run
EVERYwhere”!

Return to TOC 25

Language/Interpreter

http://docs.oracle.com/javase/6/docs/api/java/awt/Desktop.html#browse(java.net.URI)
http://documentation.basis.com/BASISHelp/WebHelp/sysguicontmethods/bbjthinclient_browse.htm
http://links.basis.com/11homepage
http://www.basis.com/v15-2011

