
www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10

ike snowflakes, no two businesses are exactly the same and neither are their
information processing requirements. How then, does one justify selecting a
standardized off-the-shelf package to meet businesses’ increasingly diverse IT
requirements? One argument is that custom software is often more expensive

throughout its entire life-cycle than a packaged solution, but packaged solutions are
almost always inadequate in some areas. Up-front savings in a packaged solution
can quickly dissolve as end users or IT staff have to devise external processes
to make up for the package’s shortcomings. On the other hand, customizing a
packaged solution can leave users “coded into a corner,” rendering the package
ineligible for future upgrades and enhancements without losing the customizations.

If you are nodding your head in agreement and want to have the best of both worlds,
read on. The Barista® Application Framework provides an answer to the dilemma!
With Barista, you can customize applications in a way that preserves modifications
through upgrades of the base product. Barista keeps track of customizations by
saving them in a special project file structure outside of the base product’s install
location and then re-incorporates them after a product upgrade.

This article goes step by step through the customization and re-installation process
using AddonSoftware® as an example.

Step 1: Creating an Application
Before making modifications to a Barista application, you need to set up a directory
structure in which Barista will save those modifications. Barista’s Create Application
wizard, as shown in Figure 1, collects information about your project such as the top
level directory, your company ID, a description for the project/application, etc. and
creates an application-area for the modifications.

Barista uses the information you provide to create default STBL values for the
barista.cfg and BASIS config.ini files (Figure 2):

When the wizard has collected all necessary information, Barista creates a file
structure for your project and prompts you to run the Auto-Synchronization process
(Figure 3). This process forwards information provided in the wizard into your
barista.cfg and BASIS config.ini files (Figures 4a and 4b), and you’re ready to begin
making customizations. >>

Preserving Your Customizations

By Chris Hawkins
Software Engineer

 L

28

Building Blocks

http://links.basis.com/timeline

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10 www.basis.com 29

Building Blocks

Figure 1. Create Application wizard collects information for the project

Figure 2. Barista provides default configuration settings

Figure 3. Auto-Synchronize new project into Barista

Figure 4a. Barista creates directory structure for new project

					 Figure 4b. Information supplied during wizard is captured in .syn file for new project

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10

Step 2: Customize
the User Interface
In order to customize forms or
business-logic callpoint code, call up
the Form Manager and right-click on
your project name. The padlock icon
that appears over the top of your project
icon (see Figure 5) indicates that
Barista is in “replication mode.” Any
form or callpoint changes you make to
the base product will also be saved into
your project area.

First, we’ll create a brand new table
and form directly in our project area
to store new Vendor Category codes
and descriptions (i.e., categorize what
we purchase from this vendor: raw
materials, inventory items, services,
etc.). Then we’ll alter the standard
AddonSoftware Vendor Master form,
adding a Vendor Category field that
validates to our new table as shown in
Figure 6. When we save and build the
form, the Barista resource file (.xml) is
saved in the standard product’s
/data/bar folder, as well as in your
project’s /data/bar folder.

Step 3: Add Custom
Business Logic
In order to make sure that we always
have a value in the Vendor Category
field, we can also add custom callpoint
code. In our example, we set the
Vendor Category to “UND” if no code is
yet defined.

When in replication mode, you can
see the callpoint code for the standard
product, but can’t modify it directly.
Instead, you add code that executes
before, after, or instead of the standard
callpoints. Barista runs the Before
callpoint code, then any code that’s
part of the standard product, then the
After callpoint code (see Figure 7).

Figure 5. Development in replication mode

Figure 6. Revised Vendor Master form: moved Hold Invoices to the right and added new Vendor Category field

Figure 7. Add custom business logic using the Barista Callpoint Editor Before/After callpoints

> >

Building Blocks

30

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10 www.basis.com

To run your code only, that is, instead
of the standard callpoint code, use the
Before callpoint along with the method
callpoint!.setStatus("SKIP").

Step 4: Create Custom Reports
In addition to modifying the user interface
and business logic controlling the
forms, you can also customize or write
new “back-end” code such as reports,
updates, or publics. Extending our
AddonSoftware example, we’ll create a
modified version of the Vendor Name and
Address listing that also shows our new
Vendor Category. First, we need to alter
the “Run Program” setting in the Option
Entry form for the report so that Barista
runs our customized report as shown in
Figure 8. Remember, because we’re in
Replication mode, the Barista resource
file for the Vendor Name and Address
listing will be saved into our project area
for safekeeping.

Next, we’ll use a text editor such as
the BASIS IDE to create a copy of the
standard report in the “prog” directory of
our project area (Figure 8a), and then
add code to open and retrieve data from
our Vendor Categories table.

Our custom report shown in Figure 9 is
now totally contained within our custom
project area, so we’ll be able to re-
incorporate it after our next upgrade.

Step 5: Re-install
Customizations After
an Upgrade
Barista’s ability to facilitate this sort of
customization adds value to the product
and also ensures that the product isn’t
frozen in time! All of the modifications to

Building Blocks

31

Figure 8. Changing the “Run Program” tells Barista to run our customized report

Figure 8a. Place back-end code in your project’s “prog” directory

Figure 9. Customized Vendor Name and Address Listing

> >

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10

Conclusion
The Barista Application Framework
gives you the tools you need to
provide customized solutions that can
be preserved through the upgrade
cycle. Now you can help the user
address their unique business needs
without the fear of becoming frozen in
time. So.... let it snow!

the base product are preserved in our
project area so we can upgrade the base
product and then use Barista’s Install
Application wizard to re-incorporate our
customizations (Figure 10).

After an upgrade, simply point the Install
Application wizard to our project area.
Barista analyzes the resource files in the
project (<project>/data/bar/*.xml
files) and compares information in those
files with the current dictionary to check
for possible conflicts. If it finds issues or
conflicts, you can print a report that lists
them and decide if the issue level should
be lowered (i.e., no longer considered
a critical issue) or if you need to make
changes in the project in order to re-
synchronize it into Barista. The latter
may occur if, for example, you added a
new field as part of your customizations,
and that new field has now also been
added to the upgraded product.

Building Blocks

32

Figure 10. Barista Install Application Wizard

When no impeding issues remain,
Barista processes the project’s resource
files, incorporating their data back into
the current dictionary, then rebuilds
any tables, forms and callpoints as
necessary. When the wizard is complete,
your modifications are once again part of
the base product.

http://links.basis.com/bbjpdf
http://links.basis.com/tc11

