
www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10

an is not yet finished with
creation, of course. At BASIS we
are constantly engaged in making

improvements to our own Integrated

 M

50

By Mike Phelps
Software Programmer

BBj IDE in the Beginning - Then and Now

In the beginning, Man created the command line editor. The editor was without form, and
void; and darkness was on the face of the Business BASIC console. Man’s fingers hovered
over the face of the console, typing things like ed 1020c[early]r[stone-age]. Then Man said
“Let there be full-screen editing” and there was _edit. And Man saw the text-based full
screen editor, that it still wasn’t good enough.

Then Man said “Let there be graphical user interfaces, with windows and mice and
integration.” And Man gathered together a graphical editor and a form designer and a
compiler and a debugger and other previously disconnected developer tools, and Man
called the result an Integrated Development Environment. And Man saw that it was good.

Development Tools

Development Environment (IDE). Even
though perfection is a long way off, we’d
like to show you the latest iteration of the
BASIS IDE built on NetBeans from Sun
Microsystems (now Oracle) and extended
by BASIS with plug-in modules to give
it the capability of developing Business
BASIC applications.

Read on for the IDE’s most helpful
features, what it takes to get it running,
and some insider tips. If you have

already tried the IDE, you may pick up
some useful information you hadn’t heard
before. If you haven’t tried the IDE, you
may find the time has come to give it a try!

Part I - Configuring the IDE for
Your Development Project
To install the BASIS IDE, you need a
Java 1.6 JDK and the latest version of
BBj® (as of BBj 10, there is no longer any
need to run the IDE with a Java 1.5 JDK).
Running the IDE with only a JRE (Java > >

https://www.basis.com/products/bbj/download.html
https://www.basis.com/products/bbj/download.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk6-jsp-136632.html
http://links.basis.com/trz-vlicense

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10 www.basis.com

BBj IDE in the Beginning - Then and Now

Development Tools

50a

Figure 1. The “Create New Project” dialog

Figure 2. The Options window with Business BASIC Development expanded and Business BASIC Type selected

Runtime Environment) instead of a full JDK is
possible but not a good idea, since you will be
missing the Java debugging tools. The IDE will
complain loudly about this condition. Likewise,
it is not a good idea to attempt to use the IDE
component from an older version of BBj with an
installation of a newer version of BBj, or vice-
versa. The BASIS-designed plug-in modules
that make the IDE Business BASIC-capable are
closely tied to the specific version of BBj they
are released with. Mixing and matching different
versions of the IDE and BBj will result in subtle
bugs or even total failure of various features.

We are sometimes asked “can I install the
BASIS IDE on a central server and run in a
multi-user environment, eliminating the need to
install it on individual developer’s machines?”
The answer is a definite maybe. Nothing in
NetBeans prevents it outright, but the BASIS
installation and plug-in modules configuration
were not designed with this in mind. For better or
worse, modern IDEs are large, complex desktop
applications dedicated to individual users who
each have their own relatively powerful machine.
We have never attempted to use the IDE with a
multi-user configuration, or received feedback
from anyone who has, but our collected wisdom
on the subject appears in the Knowledge Base
Article #01149, called Multi-user installation of
the BASIS IDE.

Another question we’ve been asked
is “Can I download the NetBeans
IDE from netbeans.org on the Web
and then simply add BBj to it to get a
working BASIS IDE?” Emphatically,
this answer is no. The BASIS IDE uses
an earlier version of NetBeans, which
we’ve heavily customized with our plug-
in modules, and which we maintain
independently from the versions
available from the NetBeans Web site.
However, if you are already a NetBeans
user with the latest version of the
NetBeans IDE installed on your system,
you can certainly install and use the
BASIS IDE as well.

After successfully installing BBj and the
IDE, what’s next? The first major step is
to define a Project that is a grouping of
all the files and resources that belong
to the application you are developing.
Select Project > Project Manager
from the main menu and press the
[New…] button to create the new Project as shown in Figure
1. Every Project needs a unique name to distinguish it from all
the others. (When you first start the IDE, you are placed in the
Default Project automatically, but it is probably not the best
idea to remain there.)

After entering a name, the IDE reconfigures to show a new
empty project.

You need to specify what kind of BBx® project your application
represents. Open the Options window via the Tools menu, then
expand Business BASIC Development (see Figure 2).

The Business BASIC Language can be either BBj or (V)PRO/5
(Visual PRO/5® and PRO/5®). This setting controls which
compiler, executor, and lister will be available to your project,
and which set of icons will represent your files in the Explorer > >

http://www.basis.com/support/kb/kb01149.html

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10

Figure 3. The Filesystems Mount submenu

Figure 4. Mounted filesystems in the Explorer

Development Tools

50b

Filesystems tab. Because the IDE cannot
distinguish which program source files apply to
(V)PRO/5 and which are meant for BBj based
upon the files names or extensions alone, we
recommend segregating BBj and (V)PRO/5
development into separate projects. If you mix
the two different types of source in a single
project, you must remember to change the
setting of the Business BASIC Language
property to the correct language type before
compiling or running your code. The source
files in the Explorer will all display the same
icon to the left of their names (either all BBj
or all PRO/5 icons), which may be confusing.

Next, start putting files into the new, empty
project by associating directories with it. This
is called “mounting filesystems.” Right-click on
the Filesystems node in the Explorer and select
Mount as shown in Figure 3.

The choices are Local Directory, Archive
Files, and Version Control. A local directory
is any directory containing your application’s
files that resides on a hard disk available
to your computer. Archive files are Java .jar
archives that your application may need. Version
control refers to any local directories containing application files
that are synchronized with a source code management (SCM) or
version control system (VCS). The IDE can serve as an easy-to-
use graphical interface for the CVS or Subversion SCM systems,
sparing you the need to use a command line for the most common
operations.

For the sake of performance, mount directories (see Figure 4)
that contain only the source files and resources necessary for
your application, and not directories full of other unrelated material
(such as the root directory of the entire hard disk partition). The
IDE examines each file in a mounted directory in order to assign
a file type. If you mount drive C: or ‘/’ as a single filesystem in the
Explorer, this process will require a lot of memory and a very long
time to finish.

If you are loading your new Project with an existing set of application
files, there may be some additional configuration to do before the
IDE will recognize your files as Business BASIC source files. The
IDE distinguishes file types (and therefore what operations can be
performed on those files) based on their file extensions. It is easy
to tell if the IDE doesn’t know what to do with your files: 1) You will
see the ‘empty page’ icon just to the left of the file name nodes in
the Explorer, and 2) when you right-click on a file name to open the
popup menu, the first choice will be ‘Treat as Text’.

Don’t panic, this simply means the IDE doesn’t have your file
extension in its default list. You can fix this by going back to the
Options window as shown in Figure 5. Go to IDE Configuration
> System > Object Types > BBj Files, then select the Extensions
and MIME Types property as shown in Figure 5. Click on the
ellipsis ‘…’ box to open a property editor listing all the file extensions
(including no extension at all) that are recognized as Business
BASIC file extensions, and then add the extensions used by your files. > >

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10 www.basis.com

Development Tools

Figure 5. The Options window with the BBj Files – Extensions and Mime Types dialog

Figure 6. The New Wizard showing the BBj file templates

50c

After adding the file extensions and
closing the dialog and Options window,
the Explorer will repaint itself. Your files
will be assigned BBj or PRO/5 icons,
depending on the Business BASIC type
you have selected, and the popup menu
will show a new set of choices.

You can create as many unique projects
as you have applications to develop.
There is no artificial limit. You may find
that you need the same directory of files
to be a part of more than one project
at the same time, which is perfectly
fine. We mentioned earlier that a best
practice is to avoid mixing (V)PRO/5 and
BBj development in the same project.

What if your BBj and PRO/5 code is
stored side by side in the same directory
or directory tree, and must remain that
way? Just create two separate projects,
set one of them as the (V)PRO/5 and
the other as the BBj language type, then
mount the same directories in both of
them.

If you are just beginning an application
development project, rather than loading
an existing project into the IDE, you may
just be mounting empty directories. In
that case, how do you go about creating
new files in the IDE?

Begin by selecting the mounted
directory in the Explorer where your new
file should be placed. Next select File
> New… from the main menu, or right-
click on the directory and select New…
from the popup menu to open a wizard
that guides you through the creation of
a new file. The wizard offers templates
(see Figure 6) for different file types
with which the IDE can work.

After selecting one of the templates,
you’ll be asked for a name. Closing
the wizard by pressing the [Finish]
button creates the new empty file and
automatically opens it in the particular
IDE tool with which it is associated.

Would you like every program source
file that your company generates to
have a copyright notice at the top?
Or would it be handy to have some
standard boilerplate code in every new
file you open, or to have empty file
templates that use other file extensions?
You can add your own templates to the
list shown in the New Wizard.

First, prepare a file containing whatever
baseline text you would like included > >

> >

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10

Development Tools

50d

Figure 7. The Options window open to Editor Settings with the BB Source Editor/Debugger – Fonts and Colors dialog

in your template, then give it a unique
name and a file extension that all new
examples made from the template
should have. (Files meant to be used in
FormBuilder or AppBuilder must have
the .arc or .gbf extension, but program
source files meant to be opened in
the Source Editor can have any file
extension that you have registered in
the Options window Object Types, as
we’ve already mentioned.)

When your file is ready, right-click on
it in the Explorer and select Save As
Template… This opens a dialog that
lets you choose the folder (or in other
words, the file type category) where
your template will appear. Click [OK] to
create a template based on your file.
You can make changes to this template
by going to the Options window and
expanding Source Creation and
Management > Templates. It is even
possible to insert macro objects into
a template, which can do interesting
things like automatically inserting the
current date and time or the name of
the user who created the new file from
the template.

Part II - Editing Source Code
You’ll probably spend most of your time
in the IDE editing your application’s
source files in the Source Editor.
Think of the Source Editor as a word
processor that is purposely designed
to assist in writing computer code. It is
outfitted with special features to help
you work faster and avoid mistakes.

Syntax highlighting, where different
types of BBx language entities are
assigned different colors, fonts, or
styles, helps you discern the structure of
your code. Verbs, functions, keywords,
strings, comments, and other entity
types are each assigned their own color,
font, and style to distinguish them from
one another.

All the attributes in Figure 7 are
customizable to suit your personal
preference. Open the Options window
and expand Editing > Editor Settings
> BB Source Editor/Debugger, then
click on the property editor (ellipsis box)
of the “Fonts and Colors” property to
display the Fonts and Colors dialog.

If you are writing BBj object-oriented
programs that take advantage of
the BBj API, code completion might
become your best friend and constant
companion. As the name implies, code
completion can automatically complete
or fill-in the statement you are currently
writing in the editor. When you type
certain “trigger” characters such as the
period (‘.’), the IDE reviews all the text in
your file and all the files it refers to, in a
process we call parsing. This allows the
editor to make an educated guess about
what you will probably need to type next.

Figure 8 shows a code completion
popup window listing the possible
choices that would be valid for an
instance of the custom object class
BBImageManipulator. Selecting one
of these choices with the mouse, or
by scrolling through the list with the
up/down arrow keys and pressing
ENTER, causes that choice to be
inserted in your text at the cursor
position. Code completion spares you
the trouble of constantly referring to
outside documentation to find out what > >

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10 www.basis.com

Development Tools

Figure 8. The code completion popup window

Figure 9. The Options window displaying BB Source Editor/Debugger properties affecting code completion

50e

methods or variables are available to
a given class object, and also ensures
correct syntax by preventing spelling or
capitalization errors.

The Options window at Editing > Editor
Settings > BB Source Editor/Debugger
offers two properties that affect code
completion (see Figure 9). You can
turn code completion off by unchecking
the Auto Popup Completion Window
property. If you would like a longer delay
before the code completion window
pops up, increase the time shown in the
Delay of Completion Window Auto Popup
property.

As your application grows and the
number of program source files
proliferates, finding your way around
in them becomes more difficult. It is
impossible to remember the exact
location of every specific subroutine or

algorithm. There needs to be a way to
quickly identify and move to a section of
code in any given file without spending
a lot of time scrolling up and down in the
editor, or searching for patterns that may
or may not produce the correct results.

The solution is the navigation capability
built into the IDE’s Explorer Filesystems

tab, where you see a hierarchical
view of your directories and files. As
you would naturally expect, clicking
on the little icon just to the left of a
directory name causes it to expand
and display a list of the files and
subdirectories it contains. Did you
know that program source files can
also be expanded? > >

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10 50f

Figure 11. The Options window displaying the BBj Compiler Settings

Figure 10. The Explorer showing an expanded
BBj source file

Development Tools

Figure 10 displays a file called
bbimagemanipulator.bbj and all the
classes, methods and subroutine labels
it contains (which are called “child nodes”
of the file they belong to).

This file isn’t currently opened in the
Source Editor, but double-clicking on one
of these child nodes will have two effects:
1) the file will open in the Source Editor,
and 2) the cursor will be placed at the
start of the class or method or label
that was selected. Expanding files in
the Explorer and double-clicking their
child nodes instantly moves the Source
Editor to the corresponding section of
code, without your having to do any time-
wasting searching.

The parsing process, which updates
code completion information and the
child nodes used for navigation, also
enables the editor to display syntax
errors. Each time the file is parsed, all the
syntax errors in the file you are currently
editing will be highlighted. A simple way
to force reparsing of your file at any
time is to press [Ctrl]+Space. If you find
this syntax error highlighting distracting
and would prefer not to be constantly
reminded of your mistakes, you can turn
it off by unchecking the Auto Highlight
Syntax Errors property in the Options
window’s Editing > Editor Settings >
BB Source Editor/Debugger page.

An even better way to catch syntax
errors before attempting to run your
code is do a test compile without
writing any output. Figure 11 shows
the Building > BBj Compiler Settings
page of the Options window. When
the ‘Compile Without Output’ property
is checked and the Error Log File
property is left blank, no tokenized
output file will be created and no error
log file will be written to disk when you
compile your source code.

When you compile your code, an
output window opens at the bottom
of the IDE that contains the list of
errors that otherwise would have
gone to the error log. Each error
message is hyperlinked to the source
file containing the error as shown in
Figure 12. Double-clicking on a syntax
error message opens the file in the
Source Editor and positions the cursor
on the line with the error.

Now that is a lot of what the IDE is
capable of and how it can help you
manage your projects and facilitate
application development, but the IDE is
extremely full-featured and can do ever
so much more! Read on to explore
more new features that improve the
development experience with time
saving techniques and powerful new
capabilities. > >

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10 www.basis.com

specified in the Options dialog, and then
displays the results when the process
is finished. Using the IDE for compiling
spares you a lot of careful typing and
shows you what’s happening in a more
comprehensible way. As we already
mentioned in Part 2 Editing Source Code,
any errors found during compilation
are displayed in the Compiler Output
Window as hyperlinks. Double-clicking
on a hyperlink opens the original source
file in the Source Editor, where the line
containing the error is highlighted.

Development Tools

50g

Figure 12. Syntax error hyperlinking

Part III - Compiling and Deploying
Compiling or tokenizing is the process of turning ASCII text source code into a
binary format that can be executed by the Business BASIC interpreter. It is one of
the final steps before turning your application over to your customers and users, and
something you will want to do often during development for testing purposes.

As a PRO/5 or BBj developer, you are already familiar with the pro5cpl and BBjCpl
compiler utilities and their various command line options. The BASIS IDE provides
a convenient graphical front end for these utilities, which simplifies the process of
selecting and compiling large numbers of files. The IDE itself doesn’t actually contain
any built-in compilers; it merely connects to the cpl compilers found in your installed
version of BBj or BBx. At compile time, the IDE assembles all the selected source
files, invokes the specified cpl compiler as a process in a new execution thread, feeds
it the appropriate command line parameters garnered from the properties you have > >

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10

Open the Options window
and expand Building >
BBj Compiler Settings to
display a list of the properties
for compiling with BBjCpl, as
shown in Figure 13.

Most of the properties you
see here directly correspond
to parameters you would
enter on the command
line if you were using the
compiler in a shell outside of
the IDE. Holding the mouse
cursor over the name of
the property causes a “hint”
window to appear with a
short explanation of what the
property controls. Most of
these properties are obvious,
so we’ll spend some time
looking at the most critical or
unusual ones.

BBj Compiler Location – This property
comes pre-configured with BBj. It simply
points to the installed BBjCpl compiler.
If you move the utilities around or store
them in unusual places, you will need to
update this property.

Error Log File – This property
corresponds to the –e command line
parameter. It is worth mentioning only
because if you specify an error log file,
the compiler errors get written to a disk
file instead of displaying in the IDE’s
Compiler Output Window. You must leave
this property blank in order to display
compiler errors as hyperlinks connected
to the original source.

Output Directory – This of course
represents the –d command line
parameter and specifies the path to the
directory where the compiler places
the tokenized files. For best results,
you should have previously created
and mounted the output directory in the
NetBeans Explorer. If this directory does
not yet exist, the BBjCpl compiler will
create and populate it with tokenized
files, but you won’t see the results in the
Explorer Filesystems tab and may wonder
if anything really happened. To create
tokenized files in the same directory as
the source files, leave this property blank.

Output File Extension – This is the –x command line parameter, and specifies
the extension added to the end of tokenized files. The extension is not limited to
a certain number of characters. If the extension is registered as a BBj module
extension, the compiled files are assigned a special icon in the Explorer that
distinguishes them from all other file types. Leaving this option blank triggers
the file naming behavior discussed in the ‘Strip Output File Extension’ property
below.

Source Directory Replication – This property has no command line equivalent;
it represents a capability added by the IDE that you can’t easily get with plain
vanilla BBjCpl at the command prompt. This property represents the name of a
specific directory from the directory path of the source file(s), which becomes
the point at which source directories are replicated in the output directory
structure. It modifies the directory path string that is forwarded to the compiler
with the –d parameter so that the generated output files will exist in a directory
tree hierarchy which is similar to the directory tree of the source files. Did you
get all that? If not, don’t worry. We’re going to discuss this in more detail a little
later.

This property is not essential for compiling; it can be safely ignored if you have
no special concerns about the default handling of the output directory. If no
output directory is specified in the ‘Output Directory’ property, this property is
ignored because your compiled files will be created right alongside your source
files in the same directory structure.

Strip Output File Extension – This property also has no corresponding BBjCpl
command line parameter. When set to ‘true’ (when the box is checked), it
removes the last file extension from the name of the compiled output file,
provided that an output directory is specified and the ‘Output File Extension’
property is left blank. If no output directory is entered in the ‘Output Directory’
property, the ‘Strip Output File Extension’ property is ignored and has no effect
on the naming of the file. To make this perfectly clear, here’s a summary of the
rules applying to tokenized file names and extensions:

Figure 13. The Options window with the BBj compiler options.

Development Tools

50h

> >

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10 www.basis.com

Compile Without Output – We touched on this property earlier in our discussion of
editing source files, but this time the setting needs to be different. You are compiling
source files with the intent of getting tokenized files written to the hard disk, so this
time the property needs to be ‘false’ (unchecked).

Select Prefix Directory Source – This property represents the –P or –c command line
parameters, depending on
which of the four possible
directory prefix list sources
is selected. A prefix
directory list is necessary
when the compiler is
directed to perform type
checking of BBj object
syntax, and therefore this
property is ignored unless
the ‘Perform Type Checking’
property is set to ‘true’. The
four possible settings are
shown in the BBj Compiler
Settings – Select Prefix
Directory Source dialog in
Figure 14.

Case 1: Output file extension supplied.
The tokenized file is named with the specified extension. The ‘Output Directory’
and ‘Strip Output File Extension’ properties do not affect file naming.

Case 2: No output file extension supplied. No output directory supplied.
The tokenized file is located in the same directory as the source file and has
the same name as the source file, minus the last extension of the source file.

Case 3: No output file extension supplied. Output directory specified. Strip
Output File Extension set to ‘false’ (unchecked).
The tokenized file is placed in the output directory, and has the same name
and file extension as the source file.

Case 4: No output file extension supplied. Output directory specified. ‘Strip
Output File Extension’ set to ‘true’ (checked).
The tokenized file is placed in the output directory, and has the same name as
the source file, minus the last extension of the source file.

Figure 14. The Prefix Directory Source dialog

Development Tools

50i

> >

Use a specified prefix list. Select the radio button, type a space-separated
list of directories in the text field and press the Enter button. The command
line arguments forwarded to the compiler will include the -P parameter and
the list of prefix directories from this text field.

Use the prefix list from a specified config file. Select the radio button, type
the path/file name of the config file that contains the desired prefix directories
and press the Enter button. The command line arguments forwarded to the
compiler will include the –c parameter and the path/file name of the config file
from this text field.

Use the prefix list from the default config file. Select the radio button.
The command line arguments forwarded to the compiler will include the
-c parameter and the path/file name of the config file specified in the BBj
Execution and Debug Settings > Config File Location property.

Use the source file’s directory as the prefix. Select the radio button. No -P
or -c parameters are added to the command line forwarded to the compiler.
If type checking is required (the ‘Perform Type Checking’ property is set to
‘true’), the compiler will use the source file’s directory as the directory prefix.

Perform Type Checking – This
represents the –t command line
parameter. When set to ‘true’, the
compiler will perform type checking on
BBj object syntax used in the source file.

Show Type Check Warnings – This is
the -W command line parameter, which
is ignored unless the ‘Perform Type
Checking’ property is set to ‘true’. When
set to ‘true’, the compiler will display
type check warnings as well as errors in
the output results.

We ought to mention that certain
BBjCpl command line parameters
are not available when compiling
BBj source code with the IDE. These
include the ? parameter, which displays
a usage summary, the @ parameter
for specifying a text file containing a
list of files to be compiled, and the -R
parameter for recursive compiling of
files in subdirectories. (As we will soon
find out, in the IDE recursive compiling
is performed by selecting a directory
instead of a file in the NetBeans
Explorer and choosing Compile All or
Build All rather than Compile or Build.)

Now that we’ve covered the most
important compiler options and you are
all configured, let’s get on with the actual
compiling (the hard part is over). To
compile a file in the IDE:
 1. Select a program source file in the 	
 Explorer Filesystems tab.
 2. Right click to open the popup menu 	
 (or open Build on the main menu).
 3. Select Compile or Build (or use 	
 their short-cut keys) to kick off the 	
 process.

A quick word about the difference
between ‘Compile’ and ‘Build’: When
you select Compile, the IDE checks
to see if a compiled version of the file
already exists, and if the date/time of
its creation or last modification is more
recent than the last modification date/
time of the source file. This is called the
“up-to-date” check. If a compiled version
already exists and is up-to-date, the
source file is not recompiled. The Build
choice does not check for pre-existing
and up-to-date compiled versions of
the source. All selected source files
are compiled again, regardless of the
status of any already compiled versions.
Choosing Compile instead of Build may
therefore save you some time, since
only the changed files in your selection
are recompiled rather than all of them.

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10

You can compile more than one file at a time by holding down the [Ctrl] key and selecting
multiple files, or you can select a directory in the Explorer instead of a file. Here’s where
we talk about recursive compiling, which is merely the difference between Compile/Build
and Compile All/Build All. When you select a file or group of files in the Explorer, you
are offered the choice to Compile or Build. If you select a directory rather than a file, the
choices expand to include Compile All and Build All. The Compile and Build options
work only with the files in the selected directory. Compile All and Build All process not only
the files in the selected directory, but also the files in any subdirectories of the selected
directory.

The Clean and Clean All menu choices (as you might expect) are there to wipe out the
tokenized files if you no longer want them. Clean will delete only the files in the currently
selected directory, while Clean All does a recursive delete through all the subdirectories
of the selected directory. Use with care!

As promised, we need to step you through a more detailed description of the ‘Source
Directory Replication’ compiler property and discuss its implications. Source directory
replication is only going to be interesting if you keep your source text files in a different
place than your tokenized files. If your preferred development style is to lump all the
hundreds or thousands of files in the entire application into the same directory, you
don’t have any source directory structure to replicate and you should leave this property
blank or set it to ‘Use no source directory replication at all’. (However, if your preferred
development style is to lump all the hundreds or thousands of files in the entire application
into the same directory, we’d love to convince you there’s a Better Way To Do Things.)

The ‘Output Directory’ property of the compiler options lets you set the destination of
the generated tokenized output files. If you leave this property blank, the compiled files
are created in the same directory as their corresponding source. If the ‘Output Directory’
property is filled in with a directory path, the IDE automatically derives a new output path
based on the ‘Output Directory’ property and the location of the source files selected for
compiling. This new output path is used as the -d parameter given to the cpl compiler, as
shown in Example A below.

 Example A
 Setting of the Output Directory property:
	 C:\BBj Development\level A\level B\bin
 Directory containing source files:
	 C:\BBj Development\level A\level B\src\level C\level D
 Adjusted –d parameter sent to the compiler:
	 C:\BBj Development\level A\level B\bin\level C\level D

In this example, the source files are kept under src and the tokenized binary files
under bin. The IDE computes the directory path for the -d command line parameter by
comparing each segment of the source path with each segment of the output directory,
starting from the beginning of the path. Each segment of the source path is identical with
each segment of the output path until the src segment, so all segments after src in the
source path are appended to the output path, which is then used for the -d parameter.
This automatic path derivation algorithm insures the output from files in src will go in bin,
the output from src\level C will go in bin\level C, the output from src\level C\level
D will go in bin\level C\level D, etc. The automatic path derivation is in effect when the
‘Source Directory Replication’ property is set to ‘Use default source directory replication’.

In Example B, this automatic derivation algorithm fails to make the expected output path:

 Example B
 Setting of the Output Directory property:
 	 D:\Our Product\Release 4
 Directory containing source files:
 	 C:\Development\Our Product\beta\gui\main menu
 Incorrectly adjusted –d parameter sent to the compiler:
 	 D:\Our Product\Release 4\Development\Our Product\beta\gui\main menu

Development Tools

50j

> >

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10 www.basis.com

The first non-matching segment is C:, so everything after the first segment is
appended to the output path specified in the Output Directory property. This
results in a long, awkward output path that probably isn’t what was desired.
The ‘Source Directory Replication’ property’s ‘Use a selected directory for
replication’ setting is designed to correct this problem and help the output
path derivation algorithm do the right thing, as shown in Example C:

 Example C
 Setting of the Output Directory property:
	 D:\Our Product\Release 4
 Directory containing source files:
	 C:\Development\Our Product\beta\gui\main menu
 Setting of the Source Directory Replication property:
 	 gui
 Correctly adjusted –d parameter sent to the compiler:
	 D:\Our Product\Release 4\gui\main menu

Because a segment from the source directory path is identified in the
‘Source Directory Replication’ property, the automatic derivation algorithm
can skip the segment comparison process. Everything in the source path
starting with the \gui\ segment is appended to the output directory, which
results in a much more appropriate -d parameter output path.

And so you reach the end of this rather long IDE discussion, we hope you
find it helpful!

Development Tools

50k

Download the latest version of BBj and enjoy these new enhancements:

Updated for Java 1.6:
• Enhanced NetBeans 3.6 codebase no longer requires Java 1.5 to 	
 run; now uses the same Java 1.6 version as the BBj server.
• Adds new Java 1.6-compatible code completion database for Java 	
 code development.

Enhanced code completion:
• Adds file navigation from the Explorer. Expand file nodes to see 	
 classes, methods and labels contained in the file; click on one of them 	
 to zoom to that spot in the file.
• Includes new BBjConstants; a BBj API class containing often-used 	
 constants for constructs like MSGBOX, making them accessible 	
 through code completion.

http://links.basis.com/adv10toc

