
B A S I S  I n t e r n a t i o n a l  A d v a n t a g e  •  V o l u m e  1 4  •  A u t u m n  2 0 10 www.basis.com

he World Wide Web has greatly 
matured over the last couple of 
decades and has now become 
an indispensable and integral 

part of our lives. While a browser’s 
main job still is to deliver information to 
a user, the most radical change lately 
has been the aspect of interactivity. In 
the old days, Web pages presented 
static information with a few hyperlinks 
sprinkled throughout. In contrast, 
today’s Web pages take advantage of 
several new technologies to present 
dynamic content. We can now view 
a Web site that customized all of its 
content – even advertisements! – to the 
visitor and allows the users to interact 
with the site to accomplish their specific 
goals, rather than being limited to 
passively viewing predefined content 
that may not apply. New technologies 
such as AJAX play a huge role in 
this change, allowing webmasters to 
design Web sites that change page 
content on-the-fly without having to 
redirect the user to a new page. The 
end result is a rich, immersive, and 
topical Web experience that customers 

Battle of the Browsers – BUI Wins

 T

By Nick Decker
Engineering Supervisor

have come to expect. BASIS’ Browser 
User Interface (BUI) dovetails into this 
user-interactive experience perfectly, by 
running fully-functional Business BASIC 
applications natively in the client’s Web 
browser.
 
A Browser Isn’t a Browser, 
Isn’t a Browser
Over the years, one of the biggest 
challenges for webmasters was 
ensuring that their Web sites looked 
good and performed well on a variety 
of different browsers. Although Web 
standards exist for the underlying 
technologies such as HTML and CSS 
specifications, it is well known that some 
browsers did not fully implement the 
specs, had bugs that prevented features 
from working properly, or in some cases, 
purposely eschewed proper behavior 
in favor of supporting older broken 
behavior for backwards compatibility. 
These challenges are trying at best for 
your typical webmaster, and as time 
goes on things haven’t improved as 
much as one would think or hope. 

On the the bright side, however, 
Microsoft’s Internet Explorer 8 (IE8) 
serves as a example of how browser 
manufacturers are now striving to 
adhere to industry standards. As a 
case in point, IE8 offers the ability 
to render a page in ‘strict mode’ that 

boasts stringent adherence to W3C 
Web standards (in addition to the default 
‘quirks mode’ that favors backwards 
compatibility with older versions of IE). 
This is good news for Web developers, 
as it eases the burden of development, 
but it is also telling in that it shows that 
browsers must now work well in order 
to remain competitive. The olden days 
of using the default browser installed 
on a system are over, as stand-alone 
browsers such as Mozilla’s Firefox 
and Google’s Chrome have become 
extraordinarily successful. Their 
increased development schedules, 
improved security mechanisms, 
advanced plug-in and extension 
architectures, and improved reliability 
and performance allowed them to leap-
frog the competition from Redmond 
and have sparked a heated competition 
for the user’s desktop and handheld 
devices.

The other bit of good news is that 
despite the vast number of differences 
in browsers today, most of the onus of 
making BUI programs run seamlessly 
on a variety of browsers has been 
taken on by the GWT (Google Web 
Toolkit) team and the BASIS engineers. 
Even though differences do exist from 
browser to browser, in many cases the 
BBx developer is shielded from these 
anomalies as the same application 
code runs similarly in multiple browsers. >>

System Administration

13

next page > >

http://links.basis.com/xcall


www.basis.comB A S I S  I n t e r n a t i o n a l  A d v a n t a g e  •  V o l u m e  1 4 •  A u t u m n  2 0 10       

System Administration

14

Over the years, browsers have 
become several times faster due to this 
browser race and have been further 
spurred on by popular benchmark 
suites like SunSpider. Several different 
benchmarking suites exist, making 
it relatively easy to make direct 
JavaScript speed comparisons between 
multiple browsers. This information has 
proven interesting when comparing 
alpha and beta versions of upcoming 
browsers, but is extremely valuable and 
directly applicable when reviewing the 
current crop of released browsers in 
order to provide a recommendation for 
your department or end users.

One of the more challenging problems 
facing today’s system administrators is 
that a browser like Microsoft’s Internet 
Explorer is still the most popular, 
despite the fact that it’s one of the 
slowest browsers available. According 
to StatCounter (see Figure 3), IE still 
holds the lion’s share of the global 
browser market. However, it’s popularity 
has been steadily dwindling over the 
years going from over 70% a few years 
ago to dipping below 50% for the first 
time in September of 2010. This is 
proof that newcomers, such as the 
super-fast Chrome, have been steadily 
gaining acceptance over the last year, 
slowly eating away at IE’s dominance. 
The writing is on the wall for the older, 
slower browsers – improve or be left 
behind.

To Microsoft’s credit, they have taken 
both speed and standards compliancy 
to heart with their upcoming Internet 
Explorer 9. The SunSpider result 
graph in Figure 4, taken from their 
recent tests, indicate how their various 
releases of IE9 Platform Preview 
compare to the older IE8 as well as the 
current crop of competitors. The latest 
pre-release of IE9 is 1,282% faster than 
IE8 – what a difference!

While those improvements are 
remarkable and give us hope for the 
future, using an unfinished Platform 
Preview release in a production 
environment is not at all feasible. If 
your customers and end users are still 
using IE6, 7, or 8, wouldn’t it be great 
if there were a simple, free way to give >> 

closer look at the BBjListButton control 
that appears in the BUI Customer 
Maintenance demo. Figure 1 also 
illustrates these; the shape and coloring 
of the control, the look of the drop down 
box on the right side of the control, and 
even the font and text alignment.

In addition to the ‘Look’ portion, the 
‘Feel’ of the controls varies as well. 
Using the same BBjListButton control 
example, selecting the drop down 
button on the right of the control 
(usually denoted by a disclosure 
triangle) causes the control to present 
the user with a list of possible choices. 
The type of list presented will differ, 
with some resulting in a drop down list, 
some with a pop up list (see Figure 2), 
and a native picker control on Mobile 
Safari.

                               c.

Figure 2. Drop down 
and pop up list for 
the BBjListButton on 
a. IE 8, b. Chrome, 
and c. Mobile Safari

Speed Considerations
Now that browsers play such a large 
role in our everyday computing life, 
browser manufacturers know that 
speed makes a huge difference in how 
well the market receives a browser and 
ultimately its popularity. Evidence of this 
comes from several sources, including 
the manufacturers themselves, who 
prominently display statistics as 
selling points like Opera’s “Our further-
optimized JavaScript engine is over 
50% faster than in Opera 10.5” (and 
that’s just one of the many differences 
in a ‘point release’ going from 10.5 to 
10.6!). As manufacturers vie for the title 
of fastest browser on the planet, the big 
winner in the browser war are the end 
users. They, after all, get to enjoy the 
rewards that are a direct result of this 
heated competition. 

There still are, and always will be, 
numerous differences between browsers 
but many of these differences are benign 
and workarounds exist for some of the 
more egregious ones.

Browser Differences for BUI 
Applications
In a nutshell, a Web browser’s task is 
to take building blocks such as HTML 
code, CSS styles, text, fonts, images, 
and scripts such as JavaScript and put 
them all together to present a coherent 
user interface. Given the complexities 
of the source combined with adherence 
to various levels of specifications, 
it’s easy to see how each browser’s 
rendering engine could come up with a 
slightly different result. In some cases, 
the differences are subtle such as a 
control looking slightly different or sized 
differently in one browser compared to 
another. In other cases, the differences 
may be profound as various JavaScript 
speed tests have shown some browsers 
to be over 1,000% slower than their 
competitors in certain tests. All of 
these variations stem from the fact that 
browsers use proprietary engines to 
perform complex tasks such as layout 
and script execution. 

As time goes by, browsers get more 
and more competitive with one another, 
vying for the title of fastest browser. 
Manufacturers realize that a fast browser 
results in a speedy, smoother, more 
satisfying Web experience. JavaScript 
performance in particular is highly 
contested, as it is ubiquitous and is 
responsible for critical concepts such 
as client-side validation, document 
manipulation, animation, and more. 
JavaScript speed is also one of the key 
factors that determines how quickly and 
responsively a BUI application performs, 
making it an important consideration 
when choosing a target browser to 
deploy a BUI application suite.

Look and Feel Considerations
As mentioned earlier, various controls 
may render slightly differently across 
various browsers. Often these 
differences are so minimal that it’s 
not likely anyone would ever notice. 
However, differences become more 
prevalent when the browser changes 
the look of a particular control, such as 
a button, to adhere to the standard for 
that browser on the target operating 
system. To illustrate this point, take a 

Figure 1. The BBjListButton in different browsers and platforms

         Mobile Safari                             IE 8                                   Chrome                            Firefox

a.

 
b. 

next page > >



B A S I S  I n t e r n a t i o n a l  A d v a n t a g e  •  V o l u m e  1 4  •  A u t u m n  2 0 10 www.basis.com

Figure 3. StatCounter’s global browser share for the last year

Figure 4. Benchmark results comparing various browser’s JavaScript performance (lower is better)

System Administration

15



www.basis.comB A S I S  I n t e r n a t i o n a l  A d v a n t a g e  •  V o l u m e  1 4 •  A u t u m n  2 0 10       

application on a slow computer instead 
of a fast one.

Now that the browser serves as the 
operating environment, choosing the 
right browser in which to run your 
application may mean the difference 
between a snappy, responsive 
application and a slow, lethargic one. As 
evidence of its commitment to the wide 
adoption of BUI, BASIS continues to test 
BUI applications on multiple browsers, 
and has made efforts to include support 
for Google’s Chrome Frame plug-in in 
order to work around slower browsers.

Google Chrome Frame – www.google.com/chromeframe

them a massive boost in speed and throw 
in support for progressive technologies like 
HTML5 and CSS3? It turns out that is not 
only possible, but only takes a minute to 
download and install via Google’s Chrome 
Frame.

Google’s Chrome Frame for 
Internet Explorer
To ameliorate the performance and 
compliance problems with the older 
versions of Internet Explorer (IE), Google 
released the Chrome Frame. Their Web site 
code.google.com/chrome/chromeframe/ 
aptly sums it up with the following text:

Summary
Web browsers are now a vital part 
of virtually all desktop and handheld 
computers. With BUI, BASIS extends its 
promise of BBj’s platform portability by 
running on an unprecedented number of 
platforms and devices. As browsers vary 
by manufacturer, platform, and device, 
the differences may become evident and 
have an impact on the performance and 
look and feel of your application running 
in BUI. While most of these differences 
are minor, speed is definitely worth 
looking into, as running your application 
on a slow browser instead of a fast 
browser is analogous to running your 

Figure 5. The screen prompting the user to install the Google Chrome Frame for IE

Google Chrome Frame is an open 
source plug-in that seamlessly 
brings Google Chrome's open web 
technologies and speedy JavaScript 
engine to Internet Explorer. With 
Google Chrome Frame, you can:
   • Start using open web technologies – 
     like the HTML5 canvas tag – right   	
     away, even technologies that aren't  	
     yet supported in IE 6, 7, or 8.
   • Take advantage of JavaScript  	       	
     performance improvements to make
     your apps faster and more 	    	
     responsive.

BASIS engineers added special code 
to the BUI system to automatically take 
advantage of Chrome Frame in IE if it is 
installed. This means that once Chrome 
Frame has been installed as a plug-in for 
IE, then running a BUI app in IE is just 
like running it in Google Chrome – it’s fast 
and renders more accurately – all without 
the end user or BBx programmer having 
to do anything extra. BASIS also modified 
their online documentation to use the 
Chrome plug-in, when available, so that 
the documentation will render as quickly 
as possible. If you attempt to run a BUI 
application in a version of IE that does 
not yet have the Chrome Frame installed, 
the BUI system will bring up the screen in 
Figure 5 to inform the user and facilitate 
the installation.

System Administration

16

http://www.google.com/chromeframe
http://code.google.com/chrome/chromeframe/
http://links.basis.com/geolocation



