
www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10

operations on a customer table. While you
can launch the form easily via the Barista
menu, the functionality is limited and the
look and feel is inconsistent with other
Barista forms. We’ll see how to plumb some
Barista code into the form so we can obtain
a Barista look and feel while intercepting
and processing menu and toolbutton events
from both the form and the MDI.

The customer “form” is really two files: an
ASCII resource file (.arc) that describes the
physical characteristics of the form, and a
BBj program (.bbj) that reads/displays the
.arc file, controls file I/O, data input, event
handling, etc. Figure 1 illustrates how
the form looks before we incorporate the
Barista menu/toolbuttons:

The program registers callbacks when
we close the form, edit or lose focus in
the customer ID field, or push any of the
three buttons. However, there is no record
navigation (first, last, previous, next) and
you must know a customer ID in order to
call up any given record.

To provide Barista look, feel, and
functionality to our form, we’ll make
modifications to both the .arc and .bbj files.
In the .arc, we’ll delete the buttons we no
longer need and change the window control
ID from 101 to 1000. Barista uses (and
expects) certain controls to have IDs in
pre-defined ranges. Developers rarely need

ne of the powerful features in the Barista® Application Framework menu
system is the capability to run programs other than Barista forms,
making it possible to run your hand-crafted or AppBuilder/FormBuilder-

crafted custom BBj® forms from within the Barista MDI. This article reveals how
to incorporate Barista menus and toolbuttons into your custom forms to extend
functionality and provide a consistent Barista look and feel. Adding this functionality
to your own forms is just one of the ways you can offer a hybrid solution in Barista,
delivering Barista form and function now in your custom forms without waiting to
re-design your forms in Barista.

Background
Barista uses the group namespace for communication between the MDI and
forms running within the MDI. A setCallbackForVariable() event registered on a
namespace variable corresponding to a given form/task allows Barista to intercept
and process MDI-level menu and toolbutton selections. At the form level, when you
opt to place menu and/or toolbuttons on the form itself using bam_controls.bbj,
you register callbacks for those particular items as well. This Barista infrastructure
gives you the ability to recognize/intercept menu/toolbutton events in the custom
BBj forms and process them accordingly.

In addition to using the namespace, plumbing Barista functionality into the custom
BBj forms requires the following Barista public programs (publics):
 • bac_mdi_ctls; builds Barista system variables containing control ID’s and 	 	
 menu/toolbutton indicators for the various MDI menu and toolbuttons
 • bam_enable;
	 • initially sets which menu/toolbuttons should appear
	 • toggles enable/disable status of selected menu items/buttons as form runs
 • bam_attr_init; gets Barista attribute arrays used in other calls
 • bam_controls; places menu and toolbuttons on form itself (rather than just MDI)
 • bac_winsize; gets/saves form location and size from Barista settings file

These publics are written in BBj and may be called by programs written using other
tools available from BASIS. AppBuilder/FormBuilder projects are easily integrated
into Barista using this process.

Example - Customer Form
Our example is based on a simple customer form written in BBj but outside of the
Barista Application Framework. The form allows basic add, change, and delete

 O

By Chris Hawkins
Software Engineer

Figure 1. Customer Form without Barista menu/toolbars

Plumbing the
Barista Framework
Into BBj Forms

18

Building Blocks

> >

http://links.basis.com/21164
http://links.basis.com/geolocation

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10 www.basis.com

Figure 3. Sample of route_func: and get_active_func: routines catching menu/toolbutton events
from form or MDI, respectively, and route_active_func: routine handling the actual routing

Delete buttons. In our new form (see Figure 2),
we provide the same functionality by just
passing the control ID for the desired menu
item or toolbutton into the Barista public that
enables/disables controls.

The heart of the Barista processing is shown
in Figure 3, in the code that is executed as
we analyze which menu item/toolbutton has
been selected and then route control to the
appropriate routine.

Summary
By incorporating the Barista menu and
toolbutton functionality into the customer form,
we can rather quickly provide a hybrid solution,
running our new form seamlessly with other
Barista forms without an extensive rewrite of
our existing custom code!

to concern themselves with control IDs when
designing forms within the Barista Application
Framework. However, if we are integrating
Barista with an "outside" form, we must examine
and alter the various control IDs in use to avoid
conflicts.

The original .bbj program contained callbacks for
the Delete, Update, and Clear buttons that routed
to corresponding subroutines. We’ll keep those
routines in the modified program, but now they
will be executed as a result of toolbutton or menu
events. Likewise, we’ll keep the routines used to
read and display records, but where the original
program only read/displayed records based on
user input, the new program can execute that
logic as we use Barista navigation buttons or
corresponding menu selections.

In the old form, as we began new data entry,
we had specific code to disable the Update and

Figure 2. Customer form revised to include Barista
menu/toolbuttons

19

For more on this topic, including code
samples and an additional Barista
example, check out “Barista Plumbing
Exposed!” links.basis.com/nfrim

Building Blocks

https://docs.google.com/a/basis.com/Doc?docid=0AegELjl_TO5AZGZyMjZqNXRfMTIyZ2Zqajl3Y3Q&hl=en
http://links.basis.com/bui

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 4 • A u t u m n 2 0 10

Delivering Building Blocks for Your Vertical Solutions

Simpler
• Scalable pricing, product, and margins

• Access to source code
• OS independent

 Faster
• Easy customization with call point code

• Includes the Barista RAD tool

Integrated
• Out-of-the-box functionality

• No dependencies on third party utilities
• Deployment flexibility

 Unique
• Preserves your customizations

through upgrades
• Co-operative development community 	

with your choice of involvement

1.800.370.9131 U.S. and Canada • +1.505.338.4188 International • info@addonsoftware.com • www.addonsoftware.com

The AddonSoftware® ERP solution provides you with the building
blocks through its core accounting, distribution, and manufacturing

bundles to fully complement your vertical market.
Don’t reinvent the wheel!

Interested?
Join the growing AddonSoftware community today to make the most of

your expertise while maximizing your revenue opportunities.
Contact us to find out more.

http://www.addonsoftware.com/

