
www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9

BBj Services using the new features of
SSCP, also featured in this edition of
the Advantage.

While BBj 9.0 supports the sample
Predicate.src, BBj 9.01 and higher
supports it with a more refined and
robust implementation.

Classes
BBj 10.0 further enhances the features
introduced in BBj 9.0 with the ability to
inherit from Java classes as well as from
Java interfaces. The ability to extend
Java classes allows the developer to
take advantage of an even greater
collection of Java libraries. For example,
XML is increasingly pervasive and is
becoming more and more difficult to
ignore. The Java Runtime Environment
provides a rich framework to provide
access to XML data, validation and
other XML-based technologies, but, for
example, writing a SAX parser requires
a developer to extend a Java class.
Before illustrating the power of this
feature with the XML libraries, though,
ManagerMap.src in Figure 3 again
uses the Google Collections Library to
demonstrate many of the features of
extending a Java Class with Custom
Objects. As with the example for Java
interfaces, extending a Java class with
BBj Custom Objects is simple.

he introduction of Java syntax
to BBj® gave developers a vast
library of existing code to add to
their toolboxes. Custom Objects

further offered the ability to transform
the way developers write code. BBj now
bridges the gap between BBj and Java
by allowing developers to extend Java
classes and implement Java interfaces
with BBj CustomObjects.

Why?
When using object-oriented programming
principles, it is not uncommon to
encounter a class that fulfills almost all
the requirements for a particular need.
“If only I had access to the code, I could
change it!” or “With just a minor tweak,
I could use this class!” Other times, a
class provides some base functionality
but leaves it up to the developer to
implement more specific details. In fact,
one of the core principles of object-
oriented design is that classes can
be extended to tune functionality and
implement more specific behavior.

When considering using classes
implemented in Java, a BBj developer
traditionally had to weigh some
considerable costs, however. On
one hand, a library may already exist
to provide a significant amount of
desired functionality. On the other
hand, modifying or implementing any
specialized behavior required learning
the Java development and deployment
model or contracting or even hiring
a Java developer to use this existing
functionality. Although it exists and
might even be freely available and
maddeningly accessible, the hidden
costs to use a Java library would begin
to reveal themselves.

What if it were not necessary to hire
a Java developer or learn a new
development model? What if a BBj
developer could simply read the Java
documentation and code their changes
in BBj? Of course, the answer is that

Inheriting Java Types
Language/Interpreter

1

 T

> >

by allowing BBj CustomObjects both
to extend Java classes and implement
Java interfaces, these scenarios are
now possible.

Interfaces
Some third party Java libraries
specify an interface that an object
must implement in order to provide
some functionality. One such library
is the Google Collections Library. The
Predicate.src example in Figure 1
is derived from the downloaded code.
It uses the 1.0 RC1 version of the
Google Collections Library to illustrate
implementing a third party interface.

The Predicate interface has various
uses in the Google Collections Library,
but one use is creating a view of a java.
util.Map that only returns values that
match the given predicate (see Figure 2).

Notice that the sample in Figure 2 does
not reference any Java source files or
Java class files for the new functionality.
The BBj source code files simply uses
what the Java library already provides.
The developer only needs to add the
JAR file for the Google Collections
Library to the BBj Services classpath.
This may even be done at runtime in

By Adam Hawthorne
Software Engineer

Figure 1. Implementing the third party Predicate interface

Figure 2. Using the Predicate interface

To download the code samples
cited in this article, click here.

www.basis.com/advantage/mag-v13n1/sscp.pdf
http://code.google.com/p/google-collections/
www.basis.com/advantage/mag-v13n1/javatypes.zip

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9 www.basis.com

Language/Interpreter

2

> >Figure 3. Specifying a Java class after the EXTENDS keyword on a line with a class declaration

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9

The first example above has several
instances of these conversions.
Consider the Java documentation
for ForwardingMap. Notice that it is
defined as public abstract class
ForwardingMap<K, V>. Since K and
V don't have type bounds, we replace
every instance with Object. Although
ForwardingMap is parameterized,
the BBj class declaration does not
include the type parameterization. Also,
compare the declarations of put() and
putAll() below in Java and BBj.

Java
• public V put(K key, V value)

• public void putAll(Map<? extends 	
 K,? extends V> map)

BBj
• METHOD PUBLIC Object put(Object 	
 p_key!, Object p_value!)

• METHOD PUBLIC void putAll(Map 	
 p_map!)

In many cases, as with this one, the
transformation is simple. Just replace
K and V with Object, and eliminate the
type parameterization on Map.

XML In A Hurry
On to the grand finale! Consider the
sample EmployeeSerializer.src
shown in Figure 4, which contains code
to take a Map of the Employee instances
and generate an XML file.

It's all well and good to create an XML
document, but what good is an XML
document if there is no parser with
which to read it? Creating a BBj XML
parser would not be impossible, but why
go through the effort of implementing
and debugging your own parser when
standards organizations like the W3
Consortium have implemented every
aspect of the XML standard with pain-
staking detail and attention?

Of course, now that it's unnecessary to
learn another development environment
or another programming syntax to use
these libraries, the answer is simple:
There's no reason to re-code it in BBj
when it's already available in Java and
can be simply extended. The code in

3

> >

Language/Interpreter

Line 19 in Figure 3 shows how to invoke
the superclass constructor, identical to
invoking a Custom Object superclass
constructor. Line 37 and line 53 similarly
invoke a superclass method exactly
as one would in a Custom Object.
All the methods of the library class
ForwardingMap call the delegate()
method to find the Map delegate
before calling the same method on it.
Each invocation of delegate() on an
instance of ManagerMap will invoke the
delegate() method in ManagerMap.

Caveats
Interoperability with Java objects does
provide significant functionality, but with
that functionality, there a few things to
watch out for.

Object Methods
Because Custom Objects are now
full-fledged Java objects, the methods
declared on java.lang.Object are also
available to CustomObject classes. Any
of the methods hashCode(), getClass(),
equals(Object), toString(), wait(),
wait(long), clone() and notify()
are now implicitly defined on Custom
Objects. A runtime error will occur
when defining a method that has the
same name and parameter types as
one of these methods but that also has
a different return type. Attempting to
provide an implementation in a Custom
Object class for a method declared as
final will also cause a runtime error. Run
bbjcpl -t on the source file to reveal
these incompatibilities. To fix an instance
of these problems, change the Custom
Object method name or add a dummy
argument to the method and all its
invocations.

Runtime Modifications
Modifying Custom Object class structure
at runtime has always been discouraged,
however, the ability to inherit Java types
adds another reason to avoid modifying
Custom Object types at runtime. The
Java runtime does not permit certain
kinds of runtime modifications to Java
classes. Since Custom Objects now may

now have a Java component, changing
the structure of a Custom Object at
runtime can invalidate its contents. In
that case, Custom Objects placed in
Java data structures will become invalid
and will cause runtime errors for any
method invoked on them. Also, BBj
will not preserve object identity of the
Custom Object Java component through
a class structure change.

Generics
Many Java APIs use Java Generics,
including the JRE itself and the running
example of the Google Collections
Library. Generics are an extension to
the type system to allow a programmer
to place further constraints on the types
of variables. Although they should be
supported in a future version of BBj,
follow the guidelines below to ensure
intended behavior in the interim.

In the Java classes example above, the
Java declaration for Map is Map<K, V>,
which gives the developer the ability to
limit the types of the keys and values
respectively. K and V are called "type
variables". They are used throughout
the rest of the API as placeholders for
the constrained types provided by the
developer. For example, Map.put()
uses the K and V type variables
V put(K key, V value) to ensure
that the map only contains keys
and values of the appropriate types.
However, all this work is done by the
Java compiler. At runtime in Java,
some of the information is unused and
some of it is unavailable, in a process
called "erasure". For the time being, BBj
programs need to specify the "erased
type" of a generic API. There are three
basic rules:

1. When a Java API uses a type variable 	
 declared simply as T, use Object in 	
 any overridden method instead of T.

2. When a Java API uses a type variable 	
 declared as T extends Type, the
 clause "extends Type" is called 	a
 type bound. Use Type in any 	 	
 overridden method instead of T.

3. When a Java API parameterizes a
 type, as in PType<T1, T2, ...>, 	
 remove the parameterization so it 	
 becomes simply PType.

To run ManagerMap.src and
the remaining examples in this
article on BBj 9.x or lower, first
run Pre10Setup.src.

http://google-collections.googlecode.com/svn/trunk/javadoc/com/google/common/collect/ForwardingMap.html

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9 www.basis.com 4

> >

Language/Interpreter

Figure 4a. Sample code that generates an XML file (continued in Figure 4b.)

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9

Language/Interpreter

> >

Figure 5 illustrates a parser that reads the XML format written
by the previous sample.

The most surprising thing about this sample is what it lacks.
Notice the missing POS(), MASK() and substring notation
to perform string manipulation, or CVS() functions to strip

5

whitespace. This class simply responds with the appropriate
operation when encountering an XML element and attribute
names. The sample EmployeeParser.src contains all
the necessary code to read the included employees.xml
file. To experiment with other XML syntax, feel free to run
EmployeeParser.src as a model.

Shape Object Hierarchy

Figure 4b. Sample code that generates an XML file

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9 www.basis.com

Language/Interpreter

Figure 5a. A parser that reads XML format (continued in Figure 5b.)

6

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9

chance to respond to important events. Libraries using these
and other similar paradigms were previously less accessible
to BBj developers because of the requirement to write Java
code. Now, the benefits of these Java libraries are available
to all developers simply by writing a Custom Object with
the familiar syntax, functionality and support of the BBx®
language.

Summary
Many Java libraries exist that do not require any Java
programming. But some very high quality libraries accomplish
a great deal by providing interfaces or classes that the library
designer expects a developer to inherit in order to supply
custom behavior. In some cases, libraries define a sequence
of operations, but leave the implementation of the operations
up to the client code. Other libraries notify the client code of
actions that occur in the program, to give the library client a

Language/Interpreter

7

Figure 5b. Continuation of a parser that reads XML format

