Language/Interpreter

= Inheriting Java Types

he introduction of Java syntax
T to BBj® gave developers a vast

library of existing code to add to

their toolboxes. Custom Objects
further offered the ability to transform
the way developers write code. BBj now
bridges the gap between BBj and Java
by allowing developers to extend Java
classes and implement Java interfaces
with BBj CustomObjects.

Why?
When using object-oriented programming
principles, it is not uncommon to
encounter a class that fulfills almost all
the requirements for a particular need.
“If only | had access to the code, | could
change it!” or “With just a minor tweak,

| could use this class!” Other times, a
class provides some base functionality
but leaves it up to the developer to
implement more specific details. In fact,
one of the core principles of object-
oriented design is that classes can

be extended to tune functionality and
implement more specific behavior.

When considering using classes
implemented in Java, a BBj developer
traditionally had to weigh some
considerable costs, however. On

one hand, a library may already exist
to provide a significant amount of
desired functionality. On the other
hand, modifying or implementing any
specialized behavior required learning
the Java development and deployment
model or contracting or even hiring

a Java developer to use this existing
functionality. Although it exists and
might even be freely available and
maddeningly accessible, the hidden
costs to use a Java library would begin
to reveal themselves.

What if it were not necessary to hire

a Java developer or learn a new
development model? What if a BBj
developer could simply read the Java
documentation and code their changes
in BBj? Of course, the answer is that

By Adam Hawthorne
Software Engineer

by allowing BBj CustomObjects both
to extend Java classes and implement
Java interfaces, these scenarios are
now possible.

To download the code samples
cited in this article, click here.

Interfaces

Some third party Java libraries
specify an interface that an object
must implement in order to provide
some functionality. One such library
is the Google Collections Library. The
Predicate.src example in Figure 1
is derived from the downloaded code.
It uses the 1.0 RC1 version of the
Google Collections Library to illustrate
implementing a third party interface.

The Predicate interface has various
uses in the Google Collections Library,
but one use is creating a view of a java.
util.Map that only returns values that
match the given predicate (see Figure 2).

Notice that the sample in Figure 2 does
not reference any Java source files or
Java class files for the new functionality.
The BBj source code files simply uses
what the Java library already provides.
The developer only needs to add the
JAR file for the Google Collections
Library to the BBj Services classpath.
This may even be done at runtime in

BBj Services using the new features of
SSCP, also featured in this edition of
the Advantage.

While BBj 9.0 supports the sample
Predicate.src, BBj 9.01 and higher
supports it with a more refined and
robust implementation.

Classes

BBj 10.0 further enhances the features
introduced in BBj 9.0 with the ability to
inherit from Java classes as well as from
Java interfaces. The ability to extend
Java classes allows the developer to
take advantage of an even greater
collection of Java libraries. For example,
XML is increasingly pervasive and is
becoming more and more difficult to
ignore. The Java Runtime Environment
provides a rich framework to provide
access to XML data, validation and
other XML-based technologies, but, for
example, writing a SAX parser requires
a developer to extend a Java class.
Before illustrating the power of this
feature with the XML libraries, though,
ManagerMap.src in Figure 3 again
uses the Google Collections Library to
demonstrate many of the features of
extending a Java Class with Custom
Objects. As with the example for Java
interfaces, extending a Java class with
BBj Custom Objects is simple. > >

(N
REM " USE statements
USE com.google.common.base.Predicate

REM ° This class implements the com.google.common.base.Predicate interface
REM " simply by referring to it 1n the IMPLEMENTS clause below and
REM " defining the regquired method apply()

CLASS PUBLIC PositionPredicate IMPLEMENTS Predicate

REM ' apply() is specified by the Predicate interface.
METHOD PUBLIC boolean apply{0bject p_employee!)
DECLARE BEjNumber result

REM ' Aszsign to result and return
REM
METHODRET result
METHODEND
CLASSEND
. J

Figure 1. Implementing the third party Predicate interface

e 2 B
USE com.google.common.base.Predicate

USE com.google.common.collect. Maps
USE java.util.Mmap

DECLARE Map employees!
DECLARE Map managers!
DECLARE Predicate mgrPredicate!

REM ' Define mgrPredicate! and get Map of employees!

REM '

REM ' Use the FPredicate to define a view of the employees! Map
managers! = Maps.filtervalues(employees!, mgrPredicate!)

(. J
Figure 2. Using the Predicate interface

n BASIS International Advantage ® Number 1 ¢ Volume 13 ¢ 2009

www.basis.com

www.basis.com/advantage/mag-v13n1/sscp.pdf
http://code.google.com/p/google-collections/
www.basis.com/advantage/mag-v13n1/javatypes.zip

—
1USE com.google.common.collect.ForwardingMap
ZUSE java.util.Hashmap
3USE java.util.Iterator
4USE java.util.Mmap
5
6USE ::Employee.src::Employee
7
8REM ' ForwardingMap is a Java class!
9CLASS PUBLIC ManagerMap EXTENDS ForwardingMap
10 FIELD PRIVATE Map Employees! = new HashMap()
11
12 REM ' This constructor explicitly calls the super class
13 REM ' constructor
14 METHCOD PUBLIC ManagerMap(Map p_employees!)
15 REM ' The default (no-argument) constructor is called by default,
16 REM ' but if a superclass has another constructor, the
17 REM ' cCustomObject can ensure it's invoked by explicitly
18 REM ' specifying it here:
19 #super ' ()
20 #Employees! = p_employees!
%% METHODEND
23 REM ' An abstract methoed in the Java class must be overridden in the
24 REM ' custom Object, or it will cause a typecheck error.
25 METHOD PROTECTED Map delegate()
26 METHODRET #Employees!
27 METHODEND
28
29 REM ' oOverriding the put({) method here ensures that when client code
30 REM ' calls put() on an instance of a ManagerMap, our ManagerMap only
31 REM ' allows Employee objects with the MANAGER position flag set.
32 METHOD PUBLIC Object put(Object p_key!, Object p_value!)
33 DECLARE Employee value!
34 value! = CooT(Employee, p_value!)
35 REM " cCheck to make sure the Employee has the MANAGER position.
36 #checkManager (value!)
37 METHODRET #super!.put(p_key!, p_value!)
38 METHODEND
39
40 REM ' overriding the putAll({) method ensures that every call to
41 REM ' putAll() always keeps the invariant that this map only has
42 REM ' MANAGER Employvees.
43 METHCOD PUBLIC VOID putall(Map p_other!)
44 DECLARE Iterator iter!
:g iter! = p_other!.values().iterator ()
REM ' cCheck to make sure each Employee has the MANAGER position.
DECLARE Employvee employee!
WHILE (iter!.hasNext())
employee! = C:oT(Employee, iter!.nexti())
#checkManager (employee!)
WEND
#super! .putall(p_other!)
METHODEND

REM ' This methed is not visible outside of this class, even in Java!
METHCOD PRIVATE VOID checkManager (Employee p_employee!)
IF ! DecfanD(p_employee! .getPosition(), Employee.getMANAGER()))
THROW "Must pass a Manager™, 500
ENDIF
METHODEND

Figure 3. Specifying a Java class after the EXTENDS keyword on a line with a class declaration

Language/Interpreter

>>

www.basis.com BASIS International Advantage ® Number 1 ¢ Volume 13 © 2009

Language/Interpreter

To run ManagerMap.src and
the remaining examples in this
article on BBj 9.x or lower, first
run PrelQSetup.src.

Line 19 in Figure 3 shows how to invoke
the superclass constructor, identical to
invoking a Custom Object superclass
constructor. Line 37 and line 53 similarly
invoke a superclass method exactly

as one would in a Custom Object.

All the methods of the library class
ForwardingMap call the delegate()
method to find the Map delegate

before calling the same method on it.
Each invocation of delegate() on an
instance of ManagerMap will invoke the
delegate() method in ManagerMap.

Caveats

Interoperability with Java objects does
provide significant functionality, but with
that functionality, there a few things to
watch out for.

Object Methods

Because Custom Objects are now
full-fledged Java objects, the methods
declared on java.lang.Object are also
available to CustomObiject classes. Any
of the methods hashCode(), getClass(),
equals(Object), toString(), waitQ),
wait(long), clone() and notify()

are now implicitly defined on Custom
Objects. A runtime error will occur

when defining a method that has the
same name and parameter types as

one of these methods but that also has
a different return type. Attempting to
provide an implementation in a Custom
Object class for a method declared as
final will also cause a runtime error. Run
bbjcpl1 -t on the source file to reveal
these incompatibilities. To fix an instance
of these problems, change the Custom
Object method name or add a dummy
argument to the method and all its
invocations.

Runtime Modifications

Modifying Custom Object class structure
at runtime has always been discouraged,
however, the ability to inherit Java types
adds another reason to avoid modifying
Custom Object types at runtime. The
Java runtime does not permit certain
kinds of runtime modifications to Java
classes. Since Custom Objects now may

now have a Java component, changing
the structure of a Custom Object at
runtime can invalidate its contents. In
that case, Custom Objects placed in
Java data structures will become invalid
and will cause runtime errors for any
method invoked on them. Also, BBj

will not preserve object identity of the
Custom Object Java component through
a class structure change.

Generics

Many Java APIs use Java Generics,
including the JRE itself and the running
example of the Google Collections
Library. Generics are an extension to
the type system to allow a programmer
to place further constraints on the types
of variables. Although they should be
supported in a future version of BB,
follow the guidelines below to ensure
intended behavior in the interim.

In the Java classes example above, the
Java declaration for Map is Map<K, V>,
which gives the developer the ability to
limit the types of the keys and values
respectively. K and V are called "type
variables". They are used throughout
the rest of the API as placeholders for
the constrained types provided by the
developer. For example, Map.put(Q)
uses the K and V type variables

V put(K key, V value) to ensure
that the map only contains keys

and values of the appropriate types.
However, all this work is done by the
Java compiler. At runtime in Java,
some of the information is unused and
some of it is unavailable, in a process
called "erasure". For the time being, BB;j
programs need to specify the "erased
type" of a generic API. There are three
basic rules:

1. When a Java APl uses a type variable
declared simply as T, use Object in
any overridden method instead of T.

2. When a Java API uses a type variable
declared as T extends Type, the
clause "extends Type" is called a
type bound. Use Type in any
overridden method instead of T.

3. When a Java API| parameterizes a
type, as in PType<T1l, T2, ...>,
remove the parameterization so it
becomes simply PType.

The first example above has several
instances of these conversions.
Consider the Java documentation

for ForwardingMap. Notice that it is
defined as public abstract class
ForwardingMap<K, V>. Since K and

V don't have type bounds, we replace
every instance with Object. Although
ForwardingMap is parameterized,

the BBj class declaration does not
include the type parameterization. Also,
compare the declarations of put() and
putAl11(Q) below in Java and BB;.

Java
e public V put(K key, V value)

* public void putAll(Map<? extends
K,? extends V> map)

BBj
* METHOD PUBLIC Object put(Object
p_key!, Object p_value!)

+ METHOD PUBLIC void putAl1(Map
p_map!)

In many cases, as with this one, the
transformation is simple. Just replace
K and V with Object, and eliminate the
type parameterization on Map.

XML In A Hurry

On to the grand finale! Consider the
sample EmployeeSerializer.src
shown in Figure 4, which contains code
to take a Map of the Employee instances
and generate an XML file.

It's all well and good to create an XML
document, but what good is an XML
document if there is no parser with
which to read it? Creating a BBj XML
parser would not be impossible, but why
go through the effort of implementing
and debugging your own parser when
standards organizations like the W3
Consortium have implemented every
aspect of the XML standard with pain-
staking detail and attention?

Of course, now that it's unnecessary to
learn another development environment

or another programming syntax to use
these libraries, the answer is simple:
There's no reason to re-code it in BBj

when it's already available in Java and

can be simply extended. The codein >>

BASIS International Advantage » Number 1 e Volume 13 » 2009

www.basis.com

http://google-collections.googlecode.com/svn/trunk/javadoc/com/google/common/collect/ForwardingMap.html

Language/Interpreter

USE java.io.Stringwriter
USE java.util.Iterator
USE java.util.Map

USE javax.xml.parsers.DocumentBuilderFactory

USE org.w3c.dom.Document
USE org.w3c.dom.Element

USE org.w3c.dom.ls.DOMImplementationLs
USE org.w3c.dom.ls.LSOutput
USE org.w3c.dom.l1s.LSSerializer

USE ::Employee.src::Employee

REM ' Get employees map.

DECLARE Map employeesMap!

employeesMap! = Employee.getEmployees ()
fileNamel$ = "emplovees.xml"”

REM ' Get a DOM Document instance to generate
DECLARE DocumentBuilderFactory factory!

DECLARE Document doc!

factory! = DocumentBuilderFactory.newInstance()
doc! = factory! .newbDocumentBuilder () .newDocument ()

REM ' The root XML element
DECLARE Element employees!
employees! = doc!.createElement("employeas”™)

DECLARE Element empElem!

DECLARE Element attributeElem!

DECLARE Iterator iter!

DECLARE Employee emp!

iter! = employeesMap!.values().iterator()

REM ' For each employee, create an employvee element with an id attribute,
REM ' and add child elements for each emplovee field.
WHILE (iter!.hasNext())

emp! = CooT(Employee, iter!.next())

empElem! = doc!.createElement("employee™)

empElem! .setAttribute("id", i (emp!.getId()))

attributeElem! = doc!.createElement("first-name™)
attributeElem! .setAttribute("value”, emp!.getFirstName())
empElem! .appendchild{attributeElem!)

attributeElem! = doc!.createElement("last-name")
attributeElem! .setAttribute("valua", emp!.getLastNama())
empElem! .appendcChild{attributeElem!)

attributeElem! = doc!.createElement("payroll-typea")
attributeElem! .setAttribute("value”, “Th{(emp!.getPayrollType()))
empElem! . appendchild{attributeElem!)

attributeElem! = doc!.createElement("position™)
attributeElem! .setAttribute("value", H7:(emp!.getPosition()))
empElem! .appendchild(attributeElem!)

REM ' Add the employee element to the root element.
employees! . appendChild(empElem!)
WEND

Figure 4a. Sample code that generates an XML file (continued in Figure 4b.) 55

www.basis.com BASIS International Advantage ® Number 1 ¢ Volume 13 © 2009 n

Language/Interpreter

&

REM ' Add the root element to the document
doc! .appendcChild(employees!)

DECLARE DOMImplementationLsS 1s!
DECLARE Lantput‘nutput!_
DECLARE StringwWriter writer!

CAST(DOMImplementationls,

. doc! .getImplementation().getFeature("Ls",
output! = Is!.createLSOutput()

output!.setEncoding("UTF-8")

writer! = new StringwWriter ()

output! .setCharacterStream(writer!)

1s! =

n E . GH})

DECLARE LSSerializer serial!

DECLARE EEjString bytes!

serial! = Is!.createLSSerializer ()

serial!.getDomConfig().setParameter ("format-pretty-print”, Boolean.TRUE)
serial! . .write(doc!, output!)

bytes! = writer!.toString().getBytes("UTF-8")

REM Create backup file if already exists
STRING fileName$, ERR="*NEXT; GOTO BACKUP_DOMNE
ERASE Tilename$ + ".bak",ERR=*NEXT

RENAME fileName$, fileName$ + ".bak"

STRING fileName$

EACKUFP_DOMNE :

ch = UNT

OPEN{ch)f1ilenName$

WRITE RECORD{ch,SIZ= li{bytes!))bytes!
CLOSE(ch)

RELEASE

Figure 4h. Sample code that generates an XML file

Figure 5 illustrates a parser that reads the XML format written
by the previous sample.

The most surprising thing about this sample is what it lacks.
Notice the missing POS(), MASK() and substring notation

whitespace. This class simply responds with the appropriate
operation when encountering an XML element and attribute
names. The sample EmployeeParser. src contains all

the necessary code to read the included employees.xm1l
file. To experiment with other XML syntax, feel free to run

to perform string manipulation, or CvS() functions to strip

Shape Object Hierarchy

EmployeeParser.src as a model.

>>

BASIS International Advantage ® Number 17 ¢ Volume 13 ¢ 2009

www.basis.com

Language/Interpreter

e B
REM ' EmployeeParser.src

USE java.util.HashMmap
USE java.util.Map

USE org.xml.sax.helpers.DefaultHandler
USE org.xml.sax.Attributes

USE ::Employee.src::Employee

CLASS PUELIC EmployeeParser EXTENDS DefaultHandler
FIELD PRIVATE Emplovee Current!
FIELD PRIVATE Map Employees!

REM ' The XML parser invokes this method when encountering a start
REM ' tag in an XML document, such as <employee id="1">.
REM ' The attributes (id="1") are contained as a map in the given
REM ' Attributes object.
METHOD PUBLIC VOID startElement(String p_uri!,

sString p_localName!,

String p_gName!,

Attributes p_attrs!)

DECLARE String value!

REM ' Perform a particular operation for each tag. To guarantee
REM ' document integrity, this might add checks to ensure the
REM ' elements appear as children of the appropriate parent

REM ' element.

SWITCH (1)
CASE p_gName! = "employees”
#Employees! = new HashMap()
EREAK

REM ' Id field on Emplovee appears as an attribute of the
REM ' <emplovee> tag.
CASE p_gName! = "employee"

IF (#Current! <> NULLQD) o
THROW "Employee tag inside existing emplovee tag", 500
ENDIF

value! = #getvValue(p_attrs!, p_gName'!, "id")
#Current! = new Employee()

#Current! .setId(Uli(value!))

EREAK

REM ' FirstName Tield on Employee appears as a
REM ' child <first-name> element in the "value" attribute

CASE p_qgName! = "first-name"
value! = #getvValue(p_attrs!, p_gName!, “valus")
#Current! .setFirstName(value!)
EREAK
REM ' LastName field on Employee appears as a
REM ' child <last-name> element in the "value" attribute
CASE p_qgName'! = "last-name"”
value! = #getvValue(p_attrs!, p_gName!, “value")
#Current! .setLastName(value!)
EREAK

REM ' PayrollType field on Employvee appears as a
REM ' child <payroll-type> element in the "value" attribute
CASE p_qgName! = "payroll-type"
value! = #getValue(p_attrs!, p_gName!, "value")
#Current! .setPayrol1Type(uii(value!)
EREAK
REM ' Position Tield on Employvee appears as a child
REM ' <position> element in the "value" attribute as a
REM ' hexadecimal encoded bitstring
CASE p_qgName! = "position”
value! = #getvValue(p_attrs!, p_gName!, "value™)
#current! .setPosition(7 {value!))
BEREAK

Figure 5a. A parser that reads XML format (continued in Figure 5b.)

www.basis.com BASIS International Advantage ® Number 1 ¢ Volume 13 © 2009 n

Language/Interpreter

REM
REM
REM

CASE p_gName! = "position”

CASE DEFAULT

SWEND
METHODEND

REM element.

DECLARE String ret!
DECLARE String Tname!
Tname! =
IF Tname! <> p_attrName!

THROW "Unknown attribute on

REM '
REM '
REM ' well-formed.

IF (p_gqname! = "emplovee")

#Current! = i
ENDIF
METHODEND

CLASSEND
.

' Position Tield on Employee appears as a child
<position> element in the "value" attribute as a
' hexadecimal encoded bitstring

value! = #getvValue(p_attrs!, p_gName!, "value")
rH{value!))

#Current! .setPosition(s
BREAK
REM ' This should never occur

THROW "Unexpected element type: "

This 15 a helper method to obtain the only attribute of an

METHOD PRIVATE String getvalue{attributes p_attrs!,
string p_elementName!,
String p_attrName!)

p_attrs! .getLocalName (0}

The XML parser invokes this method when finding a matching end

ENDIF
ret! = p_attrs!.getvValue(p_attrs!.getQName(0))
METHODRET ret!

METHODEND

REM

REM tag, such as </employee:

METHOD PUBLIC VOID endElement(String p_uri!,
String p_localName!,
String p_gname!’)

Add the now-finished employvee to the map.

some validation to determine if the Employee object 1s

#Employees! .put(#Current! .getId(), #Current!)
LLO

in a valid document.

+ p_localName!, 500

] m, =0

+ p_elementName! + + Tname!, |

This could add

Figure 5h. Continuation of a parser that reads XML format

Summary

Many Java libraries exist that do not require any Java
programming. But some very high quality libraries accomplish
a great deal by providing interfaces or classes that the library
designer expects a developer to inherit in order to supply
custom behavior. In some cases, libraries define a sequence
of operations, but leave the implementation of the operations
up to the client code. Other libraries notify the client code of
actions that occur in the program, to give the library client a

chance to respond to important events. Libraries using these
and other similar paradigms were previously less accessible
to BBj developers because of the requirement to write Java
code. Now, the benefits of these Java libraries are available
to all developers simply by writing a Custom Object with

the familiar syntax, functionality and support of the BBx®
language. ®

BASIS International Advantage ® Number 1 ¢ Volume 13 ¢ 2009

www.basis.com

