
www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9

customized for your needs. This article cannot teach you how to program in Java (for
that, see Bruce Eckel's excellent book, Thinking in Java). But we can describe how to
easily package your custom Java modules so they can be used from BBj. We will do
this in seven easy steps:

	 Step 1 – Pick a package name.

	 Step 2 – Make a directory structure.

	 Step 3 – Write the Java program(s).

	 Step 4 – Compile and test the Java program(s).

	 Step 5 – Make a jar file.

	 Step 6 – Add the jar file to the BBj default Classpath.

	 Step 7 – Test the Java class in BBj.

 B

> >

By Jim Douglas
Software Engineer

Calling Custom Java from BBj

1

Language/Interpreter

Bj® is two languages in one. It
combines the business focus and
ease-of-use of Business BASIC
with the power of Java. In Quick

and Easy Solutions With Free Java
Libraries (Part 1 and Part 2), we showed
how to find and integrate third party Java
components into your BBj application.
This article shows how easy it is to
integrate your own custom Java modules
into BBj.

Standard Java Libraries
BBj developers automatically have
access to everything in the standard
Java API. This effectively extends the BBj
language to include everything that you
can do in Java, as shown in Figure 1.

We particularly recommend reviewing
the Java Collections Framework, a
sophisticated set of data structures that
includes various kinds of maps, lists, and
sets.

Third Party Java Libraries
A vast universe of Java libraries is freely
available online. In a recent Advantage
article, Quick and Easy Solutions With
Free Java Libraries, we described how
to integrate the Apache POI library
to manipulate Microsoft Office files
directly from BBj. POI is just one of the
dozens of libraries available from the
Apache Software Foundation. Google
also develops useful Java libraries and
makes them available for download. The
Google Collections Library, for example,
can be thought of as an extension of the
standard Java Collections Framework.

Custom Java Libraries
You might decide that your BBj
application can be improved by
integrating a Java routine that is
not available online, or that must be

Figure 1. Example of BBj utilizing Java functionality

	
>map! = new java.util.HashMap()

>map!.put("a",1)

>map!.put("b",2)

>map!.put("c",3)

>print map!.get("b")

2

>sqllist! = sqllist(0)

>list! = java.util.Arrays.asList(sqllist!.split($0a$))

>java.util.Collections.sort(list!)

>print list!

[AddonDemoData, Barista, CD-Store, ChileCompany]

>java.awt.Desktop@.getDesktop().browse(new

java.net.URI@("http","basis.com","")

http://www.basis.com/advantage/mag-v12n1/libraries1-08.pdf
http://www.basis.com/advantage/mag-v12n1/libraries1-08.pdf
http://www.basis.com/advantage/mag-v12n1/libraries1-08.pdf
http://www.basis.com/advantage/mag-v12n1/libraries2-08.pdf
http://java.sun.com/javase/6/docs/api/overview-summary.html
http://java.sun.com/javase/6/docs/technotes/guides/collections/index.html
http://poi.apache.org/
http://apache.org/
http://code.google.com/p/google-collections/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9 www.basis.com

Step 1 – Pick a package name
As you can see in the samples above, Java classes have a hierarchical naming
structure, with pieces of the name separated by dots. For example, standard Java
classes have names like java.net.URI and java.util.HashMap. Names form
a tree structure – there are several packages under java.* and there are several
classes under java.net.* and java.util.*. These tree structures can be
as complex as you like, but at the top level, the convention is to start with your
company's domain name because it is guaranteed to be unique. For this example,
assume that you work for Acme Corporation and your registered domain is acme.
com. The Java convention is to flip that around, so we will define our custom Java
modules as com.acme.*. Our sample will be a utility module, so the complete
package is com.acme.util.

Step 2 – Make a directory structure
Once we have settled on our package name, we will need to make a directory
tree that mirrors the package structure. From the command line, you might do
something like this:

 [C:\work]mkdir com com\acme com\acme\util

 [C:\work]cd com\acme\util

 [C:\work\com\acme\util]

Or run the BASIS IDE and select File >
Mount Filesystem… from the menu (see
Figure 2).

Next, select a working directory and click
[Finish] as shown in Figure 3.

Right-click on the working directory, select
New Folder, and enter the first part of your
package name (com) shown in Figure 4.

Repeat this process for the next two parts
of the package name (right-click on com to
create the acme folder, then right-click on
acme to create the util folder).

Now that we created the package directory
structure, right-click on util and select New
Java Main Class. Enter the Java class name
Soundex (Figure 5) and click [Finish]. > >

2

Language/Interpreter

Figure 2. Mount a directory from the IDE

Figure 4. Enter the package name Figure 5. Name the Java class

Figure 3. Select working directory

http://java.sun.com/javase/6/docs/api/java/net/package-summary.html
http://java.sun.com/javase/6/docs/api/java/util/package-summary.html
http://en.wikipedia.org/wiki/Acme_Corporation
http://en.wikipedia.org/wiki/Java_package
http://java.sun.com/docs/books/jls/third_edition/html/packages.html#7.7

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9

Step 4 – Compile and test the Java program(s)
After filling in the details, right-click on Soundex.java
and select Compile. When it compiles without errors,
right-click on it again and select Execute to test it.
We set it up to prompt for a name and display the
calculated Soundex code. The test continues until you
press [Enter] on a blank line as shown in Figure 8.

Step 5 – Make a jar file
Java modules are deployed in Java Archive files (ZIP
files with some added components). The next step is
to create a jar file containing our Java class(es). Select
File > New from the menu, then select JAR Archives >
JAR Recipe (Figure 9), and click [Next>].

Enter the name Soundex and click [Next>] as shown in
Figure 10.

Change the Generated JAR Location to the BASIS
library directory (C:\Program Files\basis\lib\), as
shown in Figure 11.

Add the com directory to the JAR Recipe as shown in
Figure 12, then click [Next>].

Click [Finish], then right-click on the generated JAR
Recipe file (Soundex.jarContent) and select [Compile].
This generates the Soundex.jar file as C:\Program
Files\basis\lib\Soundex.jar. > >

3

Language/Interpreter

The IDE generates a skeleton for
Soundex.java as shown in Figure 6. Now
we just have to fill in the details.

Step 3 – Write the Java program(s)
Now that we have our package structure,
we can implement our Java programs. Our
sample program calculates the Soundex
code, a commonly used way to index
names for retrieval based on a "sounds
like" algorithm. We will implement this in a
file called com/acme/util/Soundex.java.
The program is structured like the code
sample in Figure 7.

The program starts with a package
statement that corresponds to the
subdirectory. It contains a public class with
the same name as the Java program file
(in this case, Soundex), and within that
class it defines a function that we will use
in our BBj program. Finally, it includes an
(optional) main function that can be used
for command-line testing.

	
package com.acme.util;

public class Soundex

{

 public static String soundex(String s)

 {

 // this is a stub

 return s;

 }

 public static void main(String[] args)

 {

 for (int i=0; i<args.length; ++i)

 {

 System.out.print(args[i]);

 System.out.print(": ");

 System.out.println(soundex(args[i]));

 }

 }

}

Figure 6. The generated code

Figure 7. Sample Soundex structure

http://en.wikipedia.org/wiki/Soundex
http://en.wikipedia.org/wiki/Java_package
http://en.wikipedia.org/wiki/JAR_%28file_format%29
http://en.wikipedia.org/wiki/ZIP_file_format
http://en.wikipedia.org/wiki/ZIP_file_format

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9 www.basis.com

> >

4

Language/Interpreter

Figure 8. Press [Enter] to halt the test (back to text link)

Figure 9. Select JAR Recipe (back to text link)

Figure 10. Enter the JAR name (back to text link)

 Figure 11. Change the Generated JAR Location (back to text link)

Figure 12. Add the directory to the JAR Recipe (back to text link)

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9

Step 6 – Add the jar file to the BBj
default classpath
It is possible to dynamically load Java classes
using a Session-specific Classpaths as described
in this issue. But for this sample, we will add
the jar file to the BBj default classpath using
Enterprise Manager, Start BBj Enterprise
Manager (or load the EM module in the BASIS
IDE from the View > BASIS Server/Database
Configuration option). In Enterprise Manager,
select the Classpath tab, then click the button
next to the <default> Classpath Entries list as
shown in Figure 13.

Highlight Soundex.jar in the list shown in
Figure 14 and click the [Select] button:

Click the button at the bottom to save the
change, then close BBj Enterprise Manager.

 Beginning in BBj 9, BBj Services no 	
 longer needs to be restarted to recognize 	
 classpath changes.

> >

5

Language/Interpreter

Figure 13. Adding a JAR to the default classpath

Figure 14. Select the Soundex.jar

http://www.basis.com/advantage/mag-v13n1/sscp.pdf

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9 www.basis.com 6

Language/Interpreter

Figure 16. Soundex.src running

Figure 15. A BBj program to test the Soundex Java class

See Also

Calling Custom Java From BBj

Inheriting Java Types

Download samples shown in this article from
www.basis.com/advantage/mag-v13n1//customjava.zip

Step 7 – Test the Java class in BBj
Write a BBj program (Soundex.src) to test
this new Java class (see Figure 15).

When Soundex.src is running, it looks like
Figure 16.

The above test uses names from the U.S.
National Archives Soundex information.

Summary
The ability to use Java code within
BBj dramatically extends the power
and flexibility available to you as a BBj
developer. This article has shown how to
quickly and easily incorporate custom Java
modules into your applications.

http://www.archives.gov/publications/general-info-leaflets/55.html
http://www.basis.com/advantage/mag-v13n1/customjava.pdf
http://www.basis.com/advantage/mag-v13n1/javatypes.pdf
http://www.basis.com/advantage/mag-v13n1/customjava.zip

