Confessions of a [EERle[VET[:! Po}ygamis{t

By Jon Bradley

ome programmers continually

experiment with new languages

and feel comfortable using multiple

languages, even on the same day. I

am not one of those people. I have
always regarded myself as a language
monogamist. In the same way that some
people can chart their lives by the music
albums they listened to in different periods
of their lives, I can divide my life into stages
based on the language in which I programmed.
As a young rookie, I programmed in QBasic,
then C. Somewhere in college I began to
experiment, going from C to PERL. After a
summer job tricked me into switching from
PERL to Java, I thought Java was my “one
and only - ‘til death us do part.”

My Confession

Well I was wrong. Over the course of several
years as a BASIS Java engineer, BBj® began
to move ahead and take its place as my
second workhorse language. It all came as a
bit of a surprise, but often BBj was the fastest
way I could think of to implement some
random application, be it a test harness, or

a mortgage calculator. In many ways, BBj
meets or beats Java by providing a
sophisticated environment, an easy to use
GUI, and some great development tools. This
makes sense when you stop to think about it.
BASIS wrote BBj in Java. The BBj project has many hundreds of thousands of lines of code; many of which specify
improvements in Java functionality, or simplify tasks that are more difficult in Java.

At BASIS’ TechCon, an attendee asked me “If I don’t have any old PRO/5® code or data and if I'm starting from scratch,
why would I use BBj instead of just using Java?” It then occurred to me that we do not highlight the improvements

BBj makes upon Java. So, I took the mission upon myself to do just that — expose, in this article, the many ways that
developing in BBj is BETTER than or AS good as developing in Java.

Simpler Code

In many cases, BBj code is simpler and shorter than Java. For instance, compare the standard Hello <name> program

in BBj (Figure 1) with Java (Figure 2): continued
mu

input "Please type your name: ",name$
print "Hello ",name$

Figure 1. HelloName.src code sample in BBj

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class HelloName
public static void main(String args[]) throws IOException

String name;
BufferedReader br = new BufferedReader(

new InputStreamReader(System.in));
System.out.print("Please type your name: ");
name = br.readLine();
System.out.printin("Hello "+name);

—
o
=

«
=
D

«
3
=
=1
-
@
=

o
=
@
-
o©
-

)

diysiauped

(uolessIuIWpY wWaisAs sj00] 1uswdojersq Juswabeue|y aseqeieq

} 3 Jon Bradley
Software
Figure 2. HelloName.java code sample in Java Engineer
www. basis.com BASIS International Advantage ®* Number 1 ¢ Volume 10 ¢« 2006 1

J

Partnership

LSystem Administration Development Tools Database Management

_
@
-—
@
=
o
=
@
-
=
=
[
(=]
©
=
(=
=
©
-

An even more revealing example is in a small GUI application illustrated in the next two figures. Compare the

incredibly large amount of complex Java code in Figure 3 with the smaller amount and far simpler BBj code in

Figure 4. Two very different programs, one almost triple the size of the other, result in identical output.
continued...

import java.awt.Dimension;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.UIManagers;

public class PushMe extends JFrame

public static void main(String args[])

//kind of optional, but i wanteg apps to look the same

/s’etupLoc;kAndFee'l v() =

JFrame win = new JFrame();

win.setTitle("Simple GUI App");
win.setPreferredSize(new Dimension(200,200));
win.setDefaultCloseOperation(win.EXIT_ON_CLOSE);
win.getContentPane().setLayout(null);

JButton button = new JButton("Push Me");
button.addActionListener(new DialogPopper(button,win));
button.setSize(new Dimension(120,30));
button.setLocation(30,50);
win.getContentPane().add(button);

win.pack();

win.setVisible(true);

p;"ivate static void setupLookAndFeel ()

try {
UIManager.setLookAndFeel (

UIManager.getSystemLookAndFeelClassName());
} catch (Exception e) { }

}
class DialogPopper implements ActionListener

private final JButton m_button;
private final JFrame m_frame;

DialogPopper(JButton p_button, JFrame p_frame)

m_button = p_button;
m_frame = p_frame;

}
public void actionPerformed(ActionEvent p_e)

int result = JOptionPane.showConfirmDialog(m_frame,
"Disable the Button?", "Modal Dialog"”,
JOoptionPane.YES_NO_OPTION, JOptionPane.PLAIN_MESSAGE);

if(result == JOptionPane.YES_OPTION) S
< simple GUI App - O[]

m_button.setEnabled(false);

It

Figure 3. PushMe code written in Java to create the sample GUI output

Disable the Button?

1
‘ |
"

2

BASIS International Advantage ® Number 1 ¢« Volume 10 « 2006 www. basis.com

SYSGUI=UNT
OPEN(SYSGUI)"X0"

declare BBjWindow win!

rem height is different because our height specifies client height, not frame height
win! =BBjAPI().getSysGui().addWindow(50,50,200,170,"Simple GUI App")
win!.setCallback(win!.ON_CLOSE, " "APP_CLOSE")

declare BBjButton button!

button! = win!.addButton(101,30,50,120,30," "Push Me")
button!.setCallback(button!.ON_BUTTON_PUSH, "PUSHED")
PROCESS_EVENTS

PUSHED :
if(MSGBOX("Disable the Button?",4,"Modal Dialog”) = 6) button!.setEnabled(0)

return —
£ Simple GUI App (- | 1 [X]

APP_CLOSE:
release
return

Figure 4. PushMe code written in BBj to create the same sample GUI output

-
Seea
-
Ss o

As you can see from these small examples, the BBj code in Figure 4 is more
succinct. BBj provides a host of language functionalities that other languages,
such as Java, typically leave to the developer. For instance, Databound GUI
controls make the process of displaying and updating table/file information
significantly less complicated in BBj.

Yes |

Objects

An area in which BBj used to lag was its object oriented capabilities. Since 2006, BASIS has offered custom objects
that provide the developer with a robust object system. In addition to custom objects, BBj has always been able to
embed Java objects including the extensive core libraries, or custom Java classes.

Database Management System

Out of the box, Java does not provide any keyed table or file types or database capabilities. BBj, however,
provides transaction tracking, extremely fast keyed look-ups, table/file locking, and full DBMS functionality.
BBj provides SQL access via both the SELECT verb, and JDBC/ODBC access. BBj provides

triggers and stored procedures to ease implementation of a host of data-centric issues. In addition,

both trigger and stored procedure logic is coded with the BBj language.

Deployment Choices

Using 3-tier BASIS architecture, developers can deploy BBj in many different ways. Thin Client allows the data
and processing to occur on a remote server, while the GUI or CUI presentation occurs on the client machine.
Deploying through Web Start can update client machines automatically with the latest BBj.

Interactive Interpreter

In BBj, the developer can debug/edit a running application within our fully interactive interpreter. This greatly
speeds development and maintenance of applications due to the ability to load or run arbitrary code at the
command prompt. There simply is no >READY prompt in Java. For many of our developers this feature has been
the essential enabler for delivering exceptional end-user support and troubleshooting capability.

Program Format

BBj can load or save both ASCII and tokenized programs. Furthermore, a developer can load a program as ASCII
and save it as tokenized, or vice versa. In Java, not only is the source program always flat text, (with a required
.java extension), but Java can only run a compiled .class file. BBj also provides SAVEP protection to protect

your source code from prying eyes.
continued...

18)jaadiayujjebenbuer

)

diysiauped

Juswiabeue|y aseqeieq

sj00] 1uswdojersq

(uolessIuIWpY wWaisAs

www.basis.com BASIS International Advantage ® Number 1 ¢« Volume 10 ¢« 2006

https://www.basis.com/products/bbj/relnotes600.htm
http://www.basis.com/solutions/BBj_CustomObjects.pdf
http://www.basis.com/advantage/mag-v10n1/triggers.html
http://www.basis.com/advantage/mag-v10n1/sprocs.html
http://www.basis.com/advantage/mag-v9n2/choices.html

J

Partnership

LSystem Administration Development Tools Database Management

_
D
-
@
=
(=5
=
=3
-—
=
=
D
b=
©
=
=
=
©
-

NetBeans IDE 3.6 - Project Default
Fil= Edt “ew Project Build Debug Versioning Tools Window Help

RoBO®B XGOTDPC 28 BR%))) PHano@adadad

|‘Filesystems | BASIS Databases x | [BB CUSTOWER(ChileCompany) x|
‘{\ Location: | General| Columins | Indexes | Options | Rules |
Bﬁ SErvers
B"' éocégH;ilzmz Template: | CLIST_NUM:C(6), FIRST_NAME: C(20),LAST_NAME: C(30,COMPANY:C(30),BILL_ADDR1:C(30),BILL_ADDRZ:C(30),CITYIC(20), STATE |
Bﬁ ChileCompary Type Length Description
=-B8 Tables - -
CATEGORY = ' Character & A
_____ % COMMTYRE FIRST_MNAME Character 20
_____ % COUNTRY LAST_MANME Character 30
% CREDIT_CODE COMPANY Character a0
_____ % CUSTOMER BILL_ADDR1 Character 30
_____ % GLIOURN_DET BILL_ADDRZ Character 30
% GLIOURN_HDR. CITY Character 20
_____ % GLMAST STATE Character 2
_____ % aLsys COLMTRY Characker 20
% GLTRANS POST_CODE Characker 12
_____ % GLTRANSTYPE PHOMNE Character 15 -
_____ % TMVOICE FAY, Characker 15
% ITEM SALESPERSCON Character 3
_____ % ORCER_HEADER SHIP_ZOME Character 2
_____ % ORDER_LINE SHIP_METHCOD Charac.ter]
% QUANTITY CLRREMT_BAL Numer!c 12
_____ % SALESRER OVER_30 Murneric 12 w
----- ES SHIP_METHOD General | 1oput | ==
% SHIP_ZONE nput | Format | Rules
----- B state
..... B2 WAREHOUSE Length Type: |Fixed v| PadfTerminator: | 0
=] m Vigws
H OPEMINY Max Length: | 0 | Predision: | 7
=] Type Definitions)
NUM_DATE Dim: | 1 | fppts |
| TIMESTAMP
2] Rules Zooie | | gee |
w-[E Employees
ﬁ Enhanced CD-Store
X Dictionaries

Figure 5. Configuring a database using the BASIS IDE

Developer Tools

BASIS facilitates development of applications with the BASIS IDE as shown in Figure 5. From within the
IDE, you can edit and debug programs, configure Data Dictionary tables/files, create resource files to specify
GUI forms, view data within BASIS-keyed tables/files, or quickly create full applications using AppBuilder.

Developer Support

Anyone active on the BBj developer list knows that BASIS provides very responsive support to developers.
While Java does have a developers’ forum, you can measure responsiveness to a bug report in ‘months.’
BASIS often provides turnaround from a support and sales standpoint the same day. Our engineering
department frequently incorporates suggestions from the development community in upcoming releases.

Summary

So, it is no secret that I still program in Java, but there are so many situations where BBj’s interactive
interpreter, easy table/file access, and GUI system make it the easiest language to use. The BASIS IDE allows
me to create GUI screens and full applications faster than I could in Java. With backward compatibility to
legacy Visual PRO/5® code and data, BBj certainly has its own share of strengths when standing up against
Java. I guess this does make me a language polygamist...enjoying the best of both worlds. ~sass

and Using Stored Procedures to Add Business Logic to the Database on page 8 in this issue.

\i) For additional information, read Using Triggers to Maintain Database Integrity on page 6

For more information about deployment choices, read Choices, Choices, Choices at
www.basis.com/advantage/mag-v9n2/choices.html

4

BASIS International Advantage ® Number 1 ¢« Volume 10 « 2006 www. basis.com

http://www.basis.com/advantage/mag-v9n2/choices.html
http://www.basis.com/onlinedocs/documentation/index.htm#<id=12124
http://www.basis.com/onlinedocs/documentation/index.htm#<id=12131
http://www.basis.com/onlinedocs/documentation/index.htm#<id=12203
http://www.basis.com/onlinedocs/documentation/index.htm#<id=33011
http://www.basis.com/onlinedocs/documentation/index.htm#<id=33063
http://www.basis.com/onlinedocs/documentation/index.htm#<id=12202

