
B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 0 • 2 0 0 6www.basis.com 1

 Partnership Language/Interpreter D
atabase M

anagem
ent D

evelopm
ent Tools System

 Adm
inistration

continued...

T

Jon Bradley
Software
Engineer

he new BASIS IDE component, AppBuilder, has arrived. Debuting in BBj® 6.0 and coupled with the
IDE’s GUI screen design tool, FormBuilder, AppBuilder provides a much-anticipated cross-platform
graphical application development tool. AppBuilder provides all the functionality BBx® developers
know and love from GUIBuilder, but with a more intuitively designed interface delivering what you see
is what you get (WYSIWYG) functionality. Figure 1 shows a standard AppBuilder screen in all its glory.

 Figure 1. The AppBuilder desktop

AppBuilder makes it easier and faster to create graphical user interface (GUI) applications. A typical GUI
program has many elements.

• Initialization
• Specification of what controls and windows the GUI shall display
• Specification of what user actions cause the execution of event handlers
• Event loop
• Error and escape handling
• Cleanup

AppBuilder makes development a snap by writing the general framework, often called the boilerplate code,
which varies very little from application to application. By integrating tightly with FormBuilder, AppBuilder is a
great tool for developing GUI resources and specifying what controls and windows display when the application
runs. With FormBuilder and AppBuilder, the BASIS IDE allows the developer to edit the resource file while also
specifying what the program does when the user interacts with those controls in a given way. By writing all the
boilerplate code, AppBuilder reduces the difficulty and time required to write a BBj GUI program. In addition,
AppBuilder only displays the developer-specified event handling code and drastically reduces the amount of code
a developer wades through while working on the application.

AppBuilder: The BASIS IDE Gets RAD
GUI Development Integration
By Jon Bradley

http://www.basis.com/onlinedocs/documentation/index.htm#<id=33063
http://www.basis.com/onlinedocs/documentation/index.htm#<id=33003
http://www.basis.com/onlinedocs/documentation/index.htm#<id=33011

2 www.basis.com

Sy
st

em
 A

dm
in

is
tra

tio
n

 D
ev

el
op

m
en

t
To

ol
s

D

at
ab

as
e

M
an

ag
em

en
t

La
ng

ua
ge

/In
te

rp
re

te
r

 P

ar
tn

er
sh

ip

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 0 • 2 0 0 6

continued...
Figure 3. BBjGui Inspector

GUIBuilder Turbo Charged
AppBuilder is a functional replacement for GUIBuilder, BASIS’ previous application development tool. The
tight integration with FormBuilder and more intuitive interface are AppBuilder’s primary advantages over
GUIBuilder. The developer can now edit the resource and navigate through the event handling code blocks
visually via the integration and coordination between the FormEditor, BBjGui Inspector, and Code Editor
shown in Figure 2.

 Figure 2. FormBuilder’s Form Editor (blue outline) and AppBuilder’s Code Editor (red outline)

Immediately after adding a control via the FormBuilder
palette, AppBuilder’s Code Editor displays the available and
registered events. In addition to listing the events, the Code
Editor provides a syntax-colored, code completion-enabled
editor for editing a given event’s code block.

The BBjGui Inspector component displays and navigates the
registered events and controls within the application in a tree
format (see Figure 3). Non-event specific code blocks, such
as the Init block, are listed as well.

In addition to the updated graphical interface, AppBuilder
provides several useful enhancements over GUIBuilder. Like
many modern applications, pressing [F1] opens up context-
sensitive help. Code completion further reduces reliance on
external documentation by providing the developer with the
method signatures for the BBjAPI objects on demand.

http://www.basis.com/onlinedocs/documentation/index.htm#<id=33039
http://www.basis.com/onlinedocs/documentation/index.htm#<id=33024
http://www.basis.com/onlinedocs/documentation/index.htm#<id=33004

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 0 • 2 0 0 6www.basis.com 3

 Partnership Language/Interpreter D
atabase M

anagem
ent D

evelopm
ent Tools System

 Adm
inistration

Automatically Inserting Commonly Used Code
Registering an event adds some default code for that event as specified by the Default Code Profile
(see Figure 4).

Figure 4. Default Code Profile dialog box

In addition to being able to configure what code AppBuilder inserts automatically when the developer
registers for an event, the developer can configure the default code profiles to register automatically for
specific events upon the addition of controls (see Figure 5).

Figure 5. Profile Management dialog box

AppBuilder Additions to GUIBuilder Functionality
AppBuilder optionally utilizes a pre-processor to provide developers a chance to modify the AppBuilder
file also known as a .gbf file. The pre-processor can easily perform string literal substitutions as shown
in Figure 6.

Compatibility and a Look Towards the Future
Existing .gbf files created by GUIBuilder can be loaded directly in AppBuilder. AppBuilder is backwardly
compatible with GUIBuilder and, therefore, Visual PRO/5® as it generates the same READ RECORD code
as GUIBuilder. Since the language has progressed significantly since the introduction of GUIBuilder in
1998, BASIS plans to add a wizard for generating a GUI application from a defined record set. At a later
date BASIS will update AppBuilder with the capability of generating modern code including event objects,
callback event dispatching, and AppBuilder custom objects. This will provide developers a choice between
backwards compatibility or the use of the powerful new language features.

continued...

http://www.basis.com/onlinedocs/documentation/index.htm#<id=2042

4 www.basis.com

Sy
st

em
 A

dm
in

is
tra

tio
n

 D
ev

el
op

m
en

t
To

ol
s

D

at
ab

as
e

M
an

ag
em

en
t

La
ng

ua
ge

/In
te

rp
re

te
r

 P

ar
tn

er
sh

ip

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 0 • 2 0 0 6

 Figure 6. Sample string literal substitutions

Summary
By providing a cross-platform application development tool integrated
within the IDE, BASIS continues to improve developers’ programming
experience. By generating and hiding the boilerplate code, AppBuilder
makes creating GUI applications faster and less repetitive. The integrated
interface for defining GUI resources along with their behavior makes
programming more intuitive. The addition of syntax coloring and
code completion reduces programmer errors, and reduces reliance on
documentation. Give AppBuilder a try, and see how it improves
developer productivity, and how “easily” the development process
unfolds.

For more information, read
FormBuilder: BASIS IDE’s Better Cross-Platform Resource Builder at
www.basis.com/mag-v9n1/fb.html

http://www.basis.com/mag-v9n1/fb.html

