
T h e B A S I S A d v a n t a g e / S p r i n g 1 9 9 6 1

continued...

Making Reusable
Interface Components in
Visual PRO/5
By Michael Martinez

The Visual PRO/5 GUI Guide offers the following advice to developers
who need to upgrade their character-based applications to use graphical
interfaces:

“..it is possible to gradually customize existing code for graphical
interfaces step-by-step. Programs that should lend themselves easily to
this type of migration include reports with separate pick-screen modules
and trapped user input where external programs are called to handle
exceptions. Update programs also usually contain pick-screens and
trapped user input for exceptions.”

The GUI Guide goes on to suggest that file maintenances may be more
difficult to bring into the graphical world. Well, that may be true and it
may not be true. This article discusses some modular design techniques
that apply equally well to file maintenance screens as to report pick-
screens and update pick-screens.

First let me explain some terms that you should become familiar with.
For brevity’s sake, however, I assume you are familiar with the concepts
outlined in the GUI Guide, such as evaluation loops, contexts, and
reading the event queue. Please refer to the GUI Guide for a full
explanation of these concepts if you are not familiar with them.

Class A class is a set of things which share common operations
and attributes. This definition should be familiar to
anyone who has practiced object-oriented programming.
You define objects that belong to given classes, and these
objects inherit “properties” from their classes.

Modal A graphical object is “modal” if the operator using an
application must do something with the object. Dialog
boxes are often modal.

Non-Modal A graphical object is “non-modal” if the operator can
ignore it. Think of a multi-document interface (MDI)
application such as a word-processor where the operator
is free to work in any of several windows at will. These
are non-modal windows.

Parent A graphical window is a “parent” if it contains other
graphical windows. The parent is the “frame” for the
child windows and other graphical objects.

Resource A resource is a graphical object. A window or dialog is a
resource, as is a button or other control placed in the
window or dialog.

In Visual PRO/5, interfaces are
built through graphical windows.
These windows may contain
menus, status bars, child
windows, and various specialized
controls such as buttons, boxes,
and the like. You can develop
design methodologies that use
modular approaches to
constructing these windows.
Such methodologies may make
use of the BASIS Resource
Editor, or programs that create
resources dynamically (i.e., at
run-time).

Modular programming is not a
new concept, but modular design
for interfaces is an unusual
concept for traditional Business
BASIC applications. In following
the examples of this article you’ll
adopt some modular design
techniques to replace the
traditional modular coding you
may be familiar with in creating
user interfaces. Each interface in
a graphical application consists
of various components, and our
intention is to develop a
methodology for reusing
components as much as possible.
One benefit of this approach will
be a reduction in the amount of
code you have to write for both
new applications and applications
being given a graphical upgrade.

Specifically, you will create
reusable tool bars and windows.
In order to be reusable, these
interface components must
contain only features common to
a set or class of applications.
Three such classes have already
been mentioned: report pick-
screens, update pick-screens,
and file maintenance programs.
Now file maintenance screens
may not seem like they have
much in common as each file is
unique in some way. But file
maintenance programs generally
share common interface features

2 T h e B A S I S A d v a n t a g e /S p r i n g 1 9 9 6

such as options to SAVE,
DELETE, GET NEXT, etc.

The key to making reusable
components is simply to identify
the common interface features.
For instance, will every report
pick-screen be created in a
window or dialog? A window may
offer some advantages over a
dialog, but whichever “base” is
used is irrelevant. If a common
style for pick-screens is adopted
then they can all share resources.
That is what this article is all
about: sharing resources between
as many programs as possible.

To illustrate this point, consider a
class of report pick-screens that
allow the operator to set date
ranges, select output devices,
establish sorting criteria and
selection criteria, and determine
output contents. You can design a
“report launcher” program that
uses a single master screen to
present the user with choices
about reports and options for
each report. This launcher can
be written in a variety of ways,
and may use any number of
interface designs.

There are five general properties
that in the course of
implementing will require
specialized handling for each
program, but nonetheless can be
grouped to create a generic
interface:

continued...

By default the report launcher will be notified if a push button, close
box, or menu item is selected, but the launcher or the resource file will
have to set the “Click or double-click on list item” event flag. For
purposes of this article assume that this dialog is created in the BASIS
Resource Editor and that the appropriate event flag is selected there.

The five buttons allow you to invoke custom dialogs (if need be) that
will prompt the operator for the desired information, so that all reports
can be launched from a single report manager. The list box allows you
to provide the operator with a selective list of reports to be run. (This
allows the application developer to customize report sets by user,
department, module, application, and the like.)

Not all reports may require all five general properties. The buttons can
be enabled/disabled based on items highlighted in the list box as the
user clicks on each. Such flexibility would require more coding than
simply making all five options available for every report regardless of
its needs, but the additional work is not extensive.

For instance, if the report launcher uses a registry for all reports, it can
quickly retrieve properties for each report in the form of Boolean
switches. The template below illustrates a simple report registry layout:

Report_Property Template Name
Report_Name C(40)
Includes_Dates U(1)
Includes_Sorts U(1)
Includes_Data_Set U(1)
Includes_Contents U(1)
Includes_Output U(1)

The report launcher contains an event processing loop that looks
something like:

sysgui=unt
open (sysgui)"X0"
report_list=unt
open (report_list)"reports"
dim event$:tmpl(sysgui)
buffer_size=len(event$),

: close_box$="X",
: select_dates=101,
: sort_criteria=102,
: data_set=103,
: report_contents=104,
: select_output=105,
: list_box=106

while
read record (sysgui,siz=buffer_size)event$
if event.code$=close_box$ then

: break
switch event.id
case select_dates;

: call "datelist",data_data$,report_name$;
: break

T h e B A S I S A d v a n t a g e / S p r i n g 1 9 9 6 3

continued...

case sort_criteria;
: call "sortlist",sort_data$,report_name$;
: break

case data_set
: call "select",select_data$,report_name$;
: break

case report_contents;
: call "contents",field_list$,
: report_name$;
: break

case select_output;
: call "output",output_dev$,report_name$;
: break

case list_box;
: gosub list_box

swend
wend
.
.
.

Note that the subroutine list_box would be the section of code where the report launcher enables and
disables the buttons. This is based on the criteria it would retrieve from the list box by querying the list box
for the current selected item:

list_box:
rem "You detected a click on the list box
report_name$=ctrl(sysgui,event.id,1)
dim report_property$:fattr(report_property$)
find record (report_list,key=report_name$,

: dom=not_on_file)report_property$
for i=select_dates to select_output;

: print (sysgui)'disable'(I);
: next I

report_name$=report_property.report_name$
if report_property.includes_dates then

: print (sysgui)'enable'(select_dates)
if report_property.includes_sorts then

: print (sysgui)'enable'(select_sorts)
if report_property.includes_data_set then

: print (sysgui)'enable'(select_data)
if report_property.includes_contents then

: print (sysgui)'enable'(select_contents)
if report_property.includes_output then

: print (sysgui)'enable'(select_output)
not_on_file:
return

The subroutine “list_box” need not be a subroutine, but placing this block of code in a subroutine makes it
easier to read the event loop logic.

The called programs may in turn call other programs which work with different modal dialogs. These
dialogs should be modal so the report launcher does not have to filter out detail events. Let the overlays
manage the complexities of validating date and sort ranges, field selections, and the like.

4 T h e B A S I S A d v a n t a g e /S p r i n g 1 9 9 6

continued...

All the above is fine for a class of report programs that use the same general pick-screen logic, but what
about pick-screens that require more detailed input? You cannot use the report launcher to handle those pick-
screen options intuitively because it doesn’t allow for extra input.

You can still make a reusable component, however, by writing a program that adds a child window to the
current parent window in the form of a tool bar:

You’ll put your five standard buttons on the tool bar and create some pick-screens that incorporate it into
their designs.

The toolbar can be added to a resource dynamically so that you don’t have to duplicate it across resource
files. The advantage to using this program is that you can “dock” the toolbar to one side of the window, and
perhaps offer customization capabilities to application interfaces at some future point by allowing operators to
specify where they want to place toolbars.

The examples below call this program “toolbar”, and it will accept as parameters two string variables,
operation$ and contents$. The first string variable will be used to communicate with the program, and the
second string variable will be used to retrieve data from “toolbar”.

The operations that “toolbar” will perform are: init, create, destroy, show, hide, move, enable, and disable. You
don’t have to provide all of these features immediately. You can resort to “stub” programming that simply
accepts certain calls and does nothing. Eventually, the “toolbar” may be extended to accommodate many
more capabilities.

Unlike the reports handled by the launcher, these “customized” pick-screens will each require their own
interface handler, a program that reads the event queue from the SYSGUI device and responds to those
events. The shared resource among these pick-screens is the tool bar itself and the “toolbar” program that
creates the “toolbar”.

The first operation you’ll pass to “toolbar” is “init”. The program will assign a template to the contents$
variable so that the calling program can assign specific IDs for the child window and the controls that it will
contain.

Next, you’ll pass the “create” operation to “toolbar”. This will tell the program to create the toolbar in the
current context. Although each pick-screen handler will have to make reference to the fields in this template,
they don’t all need to have hard-coded assignments for creating the template. Let the shared resource do this.

So a call to “toolbar” will look like:

call "toolbar","create", contents $

T h e B A S I S A d v a n t a g e / S p r i n g 1 9 9 6 5

Since nothing will be passed back in operation$ this is an internal string variable to “toolbar”, and you can
pass string literals to it.

“toolbar” itself, however, needs to do a little work with operation$. First, you should reformat the operation so
that it can be evaluated:

rem
rem Sample toolbar manager.
rem
rem For Visual PRO/5
rem

seterr exit_point

enter operation$,contents$

test$=fattr(contents$,err=assign_template)
if operation$="init" then

: goto assign_template
goto evaluate_operation

assign_template:

dim contents$:"id:u(2),context:u(2),status:u(1),select_dates:u(2)"
: +",sort_criteria:u(2),data_set:u(2)"
: +",report_contents:u(2),select_output:u(2)"

evaluate_operation:

contents.status=0

sysgui=unt
open (sysgui)"X0"

op_len=len(operation$)
if op_len<7 then

: operation$=operation$+fill(7-op_len)

op_code=int((pos(operation$="create destroyshow hide
"
: +"enable disable",7)+6)/7)

switch op_code
case 1;

: gosub create_toolbar;
: break

case 2;
: print (sysgui)'context'(contents.context);
: print (sysgui)'destroy'(0);
: contents.status=1;
: break

case 3;
: print (sysgui)'context'(contents.context);
: print (sysgui)'show'(0);
: contents.status=1;
: break

continued...

6 T h e B A S I S A d v a n t a g e /S p r i n g 1 9 9 6

case 4;
: print (sysgui)'context'(contents.context);
: print (sysgui)'hide'(0);
: contents.status=1;
: break

case 5;
: print (sysgui)'context'(contents.context);
: print (sysgui)'enable'(0);
: contents.status=1;
: break

case 6;
: print (sysgui)'context'(contents.context);
: print (sysgui)'disable'(contents.id);
: contents.status=1

swend

exit_point:

if sysgui then
: close (sysgui)

exit

create_toolbar:
dim fin_data$:tmpl(sysgui,ind=0)
fin_data$=fin(sysgui,ind=0),

: window_flag$=$00200810$,
: child_context=fin_data.available_context,
: contents.select_dates=101,
: contents.sort_criteria=102,
: contents.data_set=103,
: contents.report_contents=104,
: contents.select_output=105

print (sysgui)'child'(contents.id,0,0,0,42,$$,
: window_flag$,child_context)

print (sysgui)'context'(child_context)
print (sysgui)'button'(contents.select_dates,

: 0,0,120,40,"Select Dates",$$)
print (sysgui)'button'(contents.sort_criteria,

: 120,0,120,40,"Sort Criteria",$$)
print (sysgui)'button'(contents.data_set,

: 240,0,120,40,"Data Set",$$)
print (sysgui)'button'(contents.report_contents,

: 360,0,120,40,"Report Contents",$$)
print (sysgui)'button'(contents.select_output,

: 480,0,120,40,"Select Output",$$)
contents.status=1,

: contents.context=child_context
return

end

This program should work well with any program that needs to create the same type of resource. Note that
the child window, though given its own context, is still a component of the parent window and thus must be
assigned a unique control ID in the parent window's context.

continued...

T h e B A S I S A d v a n t a g e / S p r i n g 1 9 9 6 7

The calls to “toolbar” should look something like:

call "toolbar","init",contents$;
contents.id=10000
call "toolbar","create",contents$
call "toolbar","show",contents$

Note that this methodology will work equally well with TAOS procedures.

A third alternative for creating shareable resources is to design a resource file that creates the base window,
the menu bar, the status bar, and a row of buttons across the top and/or side, and then copy that file to new
names as you develop new pick-screens, such as the one below:

It should be apparent by now that what you can do for report pick-screens you can also do for file
maintenances and update pick-screens as well. A typical file maintenance program may offer options such as
deleting a record, getting the next record in sequence, getting the previous record, adding a new record,
updating an altered record, etc. These generic functions lend themselves well to the toolbar concept, and it is
not uncommon for graphical applications to employ multiple toolbars, especially when the design allows the
operator to “customize” their environment by selecting toolbars that are “displayed”.

In the future I’ll examine some of the refinements which can be made to traditional applications so that they
may take advantage of the graphical environment as much as possible.

	basis.com
	vispro5

