
The Time For Dates
by Andy Forget

Since the very onset of the computer age, computer software and
hardware has dealt with dates and times. Chronology has always
been an integral component of our existence as practitioners of
computer science. If we were to lose the ability to accurately record
the dates and times of critical enterprise events, we would find
ourselves technologically behind the ancient Sumerians, members of
a civilization that invented writing more than six thousand years ago,
to record critical transactions of their day: taxes, cattle, land, pottery,
metalwork, and gold trading.

The development of the calendar was the first step towards
accurately recording events. The actual solar year is 365 days 5
hours 48 minutes and 46 seconds, so when the ancients established
a year as 365 days, they noticed a problem, Over time, January
would slip into solar December, and every 4 years, the calendar
would fall back approximately one day. After several centuries, if the
problem was left unchecked, January would occur in the middle of
summer in the northern hemisphere.

Because the year is not evenly divisible by a whole number of days,
the practice arose of making arbitrary divisions and inserting extra
days, or even months, into a year. Julius Caesar, with the help on
Sosigenes, rectified the randomness of this situation by developing
the Julian calendar in 63 B.C. The unique feature of the Julian
calendar was that every fourth year was a leap year causing
February to have 29 days. Due to advances in astronomy, by 1582,
Pope Gregory XIII (Ugo Buoncompagni) ordained that 10 days be
dropped and that years ending in hundreds be leap years if divisible
by 400. This new twist on the Julian calendar resulted in the
Gregorian calendar, adopted in England in 1752, and now used as
the standard calendar today.

The Sumerians wrote on clay tablets. We write on silicon, magnetic
and optical media. Both civilizations have been faced with
information recording challenges. The Sumerian system for recording
dates was adequate for their day. When properly implemented, the
Gregorian calendar can work well for our business purposes (there
are other equally important religious calendars). However, there is no
general agreement on a contemporary method for recording
chronological information. Many UNIX systems internally represent
time as the number of seconds since January 1, 1970. The VMS
system time mechanism is based upon the number of 100-
nanosecond intervals since 00:00 hours, November 17, 1858 (the
base time for the Smithsonian Institution astronomical calendar). The
PRO/5 JUL() function produces a Julian number; the number of days
since January 1, 4713 B.C.

http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/v11n1/index.html

"For tribal man space was the
uncontrollable mystery.
For technological man it is time that
occupies the same role."

MARSHALL MCLUHAN
The Mechanical Bride

Our Problem
In the Business BASIC world there are as many mechanisms to
store a date as I have fingers on my hands. These mechanisms were
developed by independent application developers to suit the needs
of the day. The only problem, the day was in the year 1975. The
system that many of us have embraced will fail on the first minute, of
the first hour, of the twenty-first century!

Most of these dates were stored as strings, with substrings, that
referred to the month, day, and year. They all fall into a variation of
the YY/MM/DD format. These formats are used in millions of data
files in thousands of applications. Let's look at just a few of these
legacy date formats:

YEAR MONTH DAY
MAI asc(c$(1,1))-129 asc(c$(2,1))-129 asc(c$(3,1))-129

AON asc(c$(1,1))-32 asc(c$(2,1))-32 asc(c$(3,1))-32

SOA asc(c$(1))-32*64+asc(c$(2,1))-32 num(c$(3,2)) num(c$(5,2))

SSI num(c$(1,2)) num(c$(3,2)) num(c$(5,2))

There are a few scary facts that appear right away:

1. None of these methods are easily interchangeable.
2. These date storage mechanisms will fail on or before the year

2000.
3. There is no way to easily calculate days in the future or past.
4. There is no easy way to test the validity of a date.

The dates are not interchangeable because there simply was no
standard way to store a date when these mechanisms were
developed, and so each storage mechanism was developed
independently to meet the needs of the product at the time of
development.

Regardless of the rationale behind the storage mechanism, storing
the year as a two digit number is simply asking for trouble. An
example of a current problem with the two digit programming comes
from my grandmother, Pauline Forget. She was born in the year
1899 and when she goes to the Division of Motor Vehicles to renew
her drivers license, their software reports that she has not been born
yet.

One track used to overcome this problem is to check if the last two
digits of the birth year were greater than the last two digits of the
current year. If so, the application was programmed to assume that
the person was born in the last century. This track will only work until
the turn of the century; for even if we solve the two century dilemma,
we run into a problem when we span three centuries. Again, my
grandmother offers us a good example: if she was born in 1899, first
received her driver's license in 1938, and has her first speeding
ticket in 2003, current applications could not handle this information.
Since mandatory euthanasia is not an acceptable social solution to
this problem, we must find a technical one.

And what do we do when we sort on two digit dates that span a
century? The years 1999, and 1997 sort correctly (1996, 1997, 1999)
when we use the two digit year. As soon as we introduce a 21st
century date, like 2003, we end up with the wrong sort (2003, 1996,
1997, 1999)!

Also, let's hope that nobody uses the year "00" as a marker of any
kind. In less than 4 years your markers will be valid dates!

OK, one more terrifying scenario: what if you check the date of
records for backup against the current date and destroy (or simply
not backup) records older than a certain date. After the year 2000,
all of your records will fail this criteria and you will suffer an absolute
destruction of your data!

These examples make it clear that two digits are not enough to work
with when we are dealing with dates. Not only do we have to change
the physical format of our dates, we also have to change each
application, procedure, and line of code that references dates. A
medium sized accounting application with 5 modules will constitute
more than 500 programs and over 60 data files. After you have
changed your application data and programs to deal with 4 digit
years, you will have to modify each entry screen and report to deal
with 4 digit years! This simple formula will show you if you can solve
the millennium problem before it is too late:

W = ((((P+D+S)/R)*U)+I)/40

W is the number of weeks it will take you to convert. P is the number
of programs affected. D is the number of data files that need
conversion. S is the number of screens that need modified. R is the
number of maintenance programmers that are available to do the
work. U is the number of hours required to modify a single unit. I is
the number of hours of integration that will be required after all the
maintenance work is done. Assuming we have 500 programs, 60
data files, 12 screens, and 3 maintenance programmers who can
modify a program, data file, or screen in 5 hours, it will take us 2
weeks (80 hours) to integrate and the total time investment will be
25.8 weeks ((((500+60+12)/3*5)+80)/40. This does not include
design, quality assurance, field trials, alpha testing, and beta testing.

We must address this problem today or we simply won't have time to
solve it in the future!

Don't wait until the day before the millennium New Year to deal with
this problem. Even if you are good enough to fix your programs in
that small amount of time, January 1, 2000 is a Saturday. By the time
your customers recover from the largest New Year's Eve party ever,
the damage will have been done. Plan to be out of town.

If you are in town and plan to slip into the office on Saturday just to
see how things are going, don't bother; your security card to the
office will have expired because your security company uses a two
digit year system.

Obviously, Business BASIC is not the only software that is
challenged with this problem. A cottage industry has formed around
fixing this problem in legacy COBOL systems. Many hardware
platforms have intrinsic date problems including the Unisys 2200,
IBM S390, and Intel based PC's. Yes, when DOS crosses the
millennium you will suddenly be sent back in time to the year 1980. I
hope you liked the Bee Gees.

A Solution
When we finally get the nerve to confront this dilemma we should
choose a storage mechanism that is accurate, durable, and flexible.

To have an accurate mechanism, we have to properly deal with leap
years, In addition to the year 2000 being the year that our "year
odometers" will turn over, it is also a leap year (remember that Pope
Gregory VIII decided that years ending in 00, and are divisible by
400, are leap years). Early releases of Excel, Lotus, and Quattro Pro
do not treat February 29, 2000 correctly. Accuracy dictates that we
should also be able to test the validity of a date: if an operator enters
"June 31" as the delivery date for an order and the software accepts
it, we have a problem.

A durable solution requires us to adopt a mechanism that will work
well into the future. An IBM patch for the AS/400 simply puts the
problem off until 2040. This just puts the problem off to another
generation of programmers. On New Year's Day 2000, I do not want
to be on a plane which is relying upon air traffic control software that
has a millennium problem. Similarly, when I am 77 in 2040, I don't
want to find out that all 50 of my grandchildren perished in an AS/400
software related accident when they were on the way to a surprise
family reunion.

A flexible solution demands that we can easily perform several
common operations on a date without having to write a whole lot of
code. We should be able to add arbitrary days to a date and get a
correct result. I should be able to add 7 days to today and get next

week. I should be able to easily look at a history record and know
that it is older than 1095 days (3 years) and move in to an off-line
archive. I should be able to easily ensure that our once a month
backup occurs on a Friday. It should be easy to make sure that we
promise no product shipments on Sunday.

The solution I propose has been available for more that 5 years in
the PRO/5 (and BBx) JUL() and DATE() functions. The JUL()
function takes a year, month, and day argument and produces a
Julian number. The following table shows just a few things we can do
with these versatile functions:

OPERATION DESCRIPTION
jul(0,0,0)+7 A week from today
order_date+7 A week from the order date
if date(0:"%Ds")="Fri" then Is today Friday?
if trans_date<jul(0,0,0)=1095 then Was the transaction more than three years ago?

The first problem you might come across is converting a human
readable date such as "10 Jan 1997" into a Julian number for
storage. Conveniently, the PRO/5 extended utilities come equipped
with a utility that performs just such a function. The utility _undate.utl
takes as an argument the human readable form of the date, a mask
describing that form, and returns the Julian value associated with the
human readable string. The masks that undate accepts are the same
as those accepted by the DATE() function:

FORMAT d z s l
%Y 1996 96 1996 1996
%M 3 03 Mar March
%D 21 21 Tue Tuesday

Using the date function with a date format of "%D1 %M1 %Dd, %Yd"
for the Julian value 2450115 would produce the string "Thursday
February 1, 1996". Passing this string to the _undate utility, we can
easily convert it back to the Julian number 2450115.

The next problem you face is storing this numeric value. There has
never been an intrinsic Business BASIC date type. Traditional
Business BASIC systems stored dates in either 3 or 6 byte
terminated strings. The strings contained no binary information that
could be interpreted as a terminator (often $0A$). If we represented
the new Julian date as a binary integer, and if you have line-feed
terminated fields in your record, the integer value could be construed
as a terminator when it appears prior to any of the variable length
fields. For example, the Julian date for April 12, 1996 is 2450186.
The binary hex representation of this value is $0025630A$. It
contains, by sheer coincidence, a line-feed character (the 4th byte of
the binary string). If you were reading values form a data file using an
I/O list, your Business BASIC would have problems distinguishing
where fields began and ended.

If you use PRO/5 templates and do not use any variable length data,
you can store Julian values as a 4 byte integer. Storing the Julian
value as a numeric means that there will be no subsequent
conversion required and operations against the date value will be
more natural. I strongly recommend this method of date storage.

Another storage option simply stores the data as a 7 byte character
string, or in Business BASIC, stores it as an ASCII numeric. For
example, April 12,1996 would be stored as the string "2450186".
This eliminates the binary data problem and is easy to perform
operations against, but does cost 7 bytes of disk space for each
date.

Part of the rational behind the original OEM date formats was the
conservation of disk space, but in this day and age, saving disk
space is the least of our problems. However, there is a certain
amount of macho programmer mystic about saving a few bytes, and
other legacy constraints associated with these existing systems. If
you simply must get your dates to fit into 6 bytes, try this:

 d$=hta(bin(julian_value,3))

This will result in a 6 byte string that must be converted in the
following method after reading it from a file:

 julian_value=dec(ath(d$))

This mechanism, known as the SSJ date format, is fine. It is durable
and accurate, but does require a conversion step prior to being
flexible.

The Rest of the Planet
While we have been mucking around with our own internal date
formats, the world has not stood still. There is an ISO standard for
storing and manipulating dates as well as an SQL standard. Unless
we plan to integrate our applications with an ISO conformant
application, we won't have to worry about the ISO standard, but we
do have to worry about the SQL standard.

What we want to do is allow third-party applications the ability to
browse our data. In particular, we would like ODBC compliant
applications to use the BASIS ODBC Driver and add value to our
existing systems. In the guise of the Microsoft ODBC specification,
the ANSI x3.135 SQL standard calls for a uniform date format. The
ODBC date construct is a structure with the following format:

 type MY_DATE struct
 {
 year SWORD;
 month UWORD;
 day UWORD;
 };

Any date information coming from an ODBC driver to an application
must adhere to this format. This means that all of the proprietary

formats must be converted to ODBC format in order for the ODBC
compliant application to understand them. There is nothing more
satisfying than looking at an Excel spreadsheet and seeing your date
displayed in a human readable format.

Fortunately, the BASIS ODBC Driver can recognize certain native
date formats. By default, if a numeric field (BBx types N, I, U, X, Y, B,
and D) has a column name that ends in "DATE:," like SHIP_DATE,
the BASIS ODBC Driver will assume that the numeric value is Julian
and do an automatic conversion into the ODBC date format. If you
adopt the conversion of storing your dates as numeric Julians (for
example. ASCII numeric or integer) you will automatically benefit
from this conversion. [In version 2.0 of the ODBC Drive, a date
extension must be explicitly specified in the ODBC configuration
dialog. In addition, Leaving the OEM Type option unset in the
configuration dialog will cause the ODBC Driver to evaluate columns
as Julians.]

Additionally, the BASIS ODBC Driver can recognize certain OEM
formats. If you modify your odbc.ini file and add the line DATETYPE=xxx
(where xxx is either MAI, SOA, AON, SSI, or SSJ) to your
datasource, the BASIS ODBC Driver will treat character fields which
have a column name that ends in "DATE" as the respective OEM
date format. [With the BASIS ODBC Driver 2.0, which does not use
an odbc.ini file, this option should be set using the ODBC
Datasource Administrator. This can be accessed through the ODBC
icon in the Win95/NT control panel.]

Because of the support for OEM dates provided by the BASIS
ODBC Driver, it is possible to create an Access or Visual Basic
application that can not only read and understand the OEM date
formats, but will be able to insert and update new and existing date
values into existing data files.

Sadly, except for the SSJ format, all of the OEM date formats
supported by the BASIS ODBC Driver will assume all years are in
the 20th century (the 1900's) because they only provide two-digit
year fields.

Conclusion
Perhaps it wasn't the Babylonians who conquered the Sumerians.
Maybe it was a lack of a consistent and flexible mechanism to record
dates which eventually spelled the end for the Sumerian civilization.
If you don't want to have a hand in the fall of Western Civilization,
you should start thinking about your millennium date problem now!

A great place to get further information about the year 2000 problem
is on the Year 2000 Web site http://www.year2000.com/. I just surfed
this site and the first thing Year 2000 told me was that I had 3 years,
333 days, 8 hours, 51 minutes, and 44 seconds to get my act
together.

http://www.year2000.com/

	basis.com
	The Time For Dates

