More Adventures in TAOS

By William Baker

At first Randolph and I looked at TAOS as a convenient front end for
Extended Utilities. For example, it is much easier to write a TAOS
statement using the CHOOSE verb than to write a menu using the EUS
Menu System and BBX*CALLs. In TAOS you can write one command
to create a menu with three choices on it:

choose a$ from "x", "y", "z";

Using EUS I had to define a menu with the Menu System menu
designer, give each menu a name and keep track of what file it was in,
and so on and so on.

After studying TAOS a bit, it was clear to me that TAOS was designed
to be more than a front end for the EUS toolkit. Randolph got
enlightened on this subject, as so often happens, because of a complaint
from a customer. He told me that he upgraded a system to use TAOS-
generated menus, and the customer complained because the new
menus were slower than the old ones.

Randolph told me, “I explained to him that there was more overhead in
using the new menus, but they were nicer with boxes and little
messages at the bottom of the screen. He said he didn’t care about
boxes and messages, he wanted the plain old menus that were faster.”

“Was there that much of a difference?” I asked.

“Not enough for me to see, but he said he had timed it with a
stopwatch, and it was half a second slower.”

“With someone who is such a nut about speed, I wouldn’t leave the two
systems installed at the same time so he could compare them easily.”

“I tried that. I took the old programs off, but he restored them from a
tape so he could run this stopwatch test on them.”

“Sounds like a real bad case,” I said. “Is he the type who buys every
new product he can to speed up his computer?”

“Oh no, he’s on a very tight budget. This forces him to only upgrade
when something breaks. He still has a ‘386, and says my slow software
is dragging it down.”

“Sounds like the kind of customer who is hard to please. In cases like
this I've found it best to distract people from the issue that’s bothering
them and get them focused on something more positive.”

Randolph brightened a bit at my suggestion. “So you think I should

offer him food? Maybe we can
have some cucumbers and
radishes, with a little salt. Say,
can I have one of those salt
packets you have piled up in your
pencil drawer?”

“I'm sure food would distract you
from most anything, but I was
thinking of something more long-
lasting. You could approach this
customer and say, ‘I know the
menus are slower, but I'm
integrating a new language that
will give us several benefits. For
example, I can give you some of
those reports you’ve been
wanting at a reduced price.”

“A reduced price? Why should I
reduce my price just because he’s
complaining?”

“You don’t reduce your price
because he’s complaining, but
because you can write reports
faster. Let me show you what I've
been doing with reports in TAOS.
The key to reports in TAOS is the
FOR EACH verb, which sets up a
loop to sequentially read a file. 1
can write a procedure of three
words that will read the entire
customer file:”

foreach customer;

“Of course, that’s not much good
by itself, so I add a DISPLAY
statement to display as many
fields in the customer file as will
fit on the screen:”

foreach customer
display customer;

When I typed, compiled and ran
this procedure, Randolph was
suitably impressed with the
listing that came out on my
screen after a few seconds. “You
did in two short lines what would
take me 15 long lines in BBX” he
said.

continued...

2 The BASIS Advantage/Spring 1996

“You can see the customers listed in customer number order, since customer number is the primary key.
Now what if we want to list in name order, how would you do that?”

“I would hope there is an alternate index on customer name and read on that KNUM,” Randolph answered.

“It just so happens that this file does have an alternate index on customer name. I'm going to tell TAOS to
use that index with the SORT BY clause, it will figure out which KNUM to use, and I'm going to tell it to
print just two fields.” I modified my procedure to look like this:

for each customer sort by name
display customer.name, customer.number;

“Now,” I asked, “what would you do if the customer file didn’t have an alternate index on customer name?”
“I wouldn’t try to write a report sorted by customer name then,” Randolph replied promptly.

“I suppose you wouldn’t, but TAOS is not so picky. I will get a report sorted by state, which I assure you is
not an indexed field in this file.” I changed SORT BY NAME to SORT BY STATE and displayed the state
field, then I compiled and ran it again. This time the report took a little longer. During the wait I explained
that TAOS was building a temporary sort file, which was what Randolph would have to do if he had accepted
a job to write this report in BB*.

When the report came up on the screen, I pointed out to Randolph that the order of the customers in each
state was a little unpredictable. Generally customers in the same state would be sorted by primary key, but
BB* doesn’t guarantee the order of duplicate records on an alternate index. To make more sense of the
report, we could sort on more than one field to create a unique key. This time my procedure read:

for each customer sort by state
sort by city
sort by number
display customer.number, customer.name, customer.city, customer.state;

Now all customers in each city were grouped together, and I was assured of getting customers in each group
to report in customer number order.

“This is very nice,” Randolph said, “Can you get it to sort on numeric fields?”

“Yes, I can. TAOS will build a sort file in proper numeric order. A good example is sorting by year-to-date
sales:”

for each customer sort by ytd_sales
sort by number
display customer.number, customer.name, customer.ytd_sales;

“Do you think you might be able to interest your speed demon customer in some easy-to-do reports?” I asked.

“Maybe so, but I've gotten distracted thinking about cucumbers and salt. Can I please look in your pencil

drawer now?”

	basis.com
	randolph

