
What Makes a Web Client Dynamic, Anyway?

By Jerry Karasz

Overview
Tired of applications with the same old look? Looking for a way to spruce up
your user interfaces? Want your programs to be responsive, optimizing their
screen size and layout for each user’s device? Well, look no further — BASIS’
newest user interface model, the Dynamic Web Client (DWC), is here to help
you do all that and more!

If you’ve heard rumblings that change is on the way (or even if you have
been living in Antarctica and haven’t heard anything about it), read on and
see what the DWC can do for you!

So What Is the DWC, Anyway?

With the DWC, BASIS introduces a new browser-based client, letting you use
today’s web technologies to:



● Deliver faster performance and enhanced styling using controls based
on Web Components.

● Improve initial load times by minimizing the number of bytes delivered
to the browser.

● Facilitate responsive design with the introduction of a new flow layout
mode for top-level and child windows.

● Introduce theme support by including light and dark default themes
and allowing developers to create their own themes.

The DWC supports sufficient controls, underlying structures, and frameworks
for production applications that work well for mobile and desktop clients in
all modern web browsers and operating systems.

Why a New Client?

So why did BASIS write a brand new client instead of just improving upon
the Browser User Interface (BUI)? Well, to begin with, BUI was created to
replicate the look of BBj’s Graphical User Interface (GUI), as closely as
possible, in a browser. And it does that well, even today. BASIS designed BUI
over a decade ago based on the prevailing web standards and browser
features from that era. We looked at simply improving BUI and were able to
improve initial load times by optimizing the delivery of JavaScript to the
client. These changes gave BUI measurable improvements in load time. But
there were several desirable enhancements and features that we wanted in
the DWC that simply could not be shoehorned into the BUI client, such as:

● Removing the Google Web Toolkit (GWT) from the equation.

● Adding support for flow layouts, integrating CSS layout technologies,
and offering responsive and adaptive layouts that are fully contained
on the client to avoid making round trips between the client and the
remote server that slow down application execution.

● Overhauling the CSS and customization system by completely
redesigning the concept of styling from the ground up and adding
theming capabilities.

Finally, the web today is a dramatically different place than it was in 2009. It
offers advanced technologies, like CSS custom properties, that just were not
available when we designed BUI. Today’s modern frameworks and design
patterns offer improved modularity, reusability, customizability, and
future-proofing, making them a vastly superior choice over decade-old web
technologies. By utilizing these technologies, developers can create faster,
more responsive, and more visually appealing web applications, which can
ultimately lead to increased user engagement and satisfaction.

https://ionic.io/blog/5-reasons-web-components-are-perfect-for-design-systems


Because of these factors, there are areas where the DWC purposefully
breaks ties with the past in order to provide a modern user experience.
These changes include:

● Updated layout control: instead of forcing you to use precise,
down-to-the-pixel fidelity for control sizing and layout, the DWC offers
an optional flow layout that contributes to a dynamic UI.

● Improved font sizing: by default, the DWC does not use the same font
size as BUI, as it would be antithetical to today’s web standards and
would ultimately detract from the user’s experience.

But don’t worry — we realize that backward compatibility is important, so we
added configuration options. These options will help you gradually move
your apps into the future. Our See Also section includes a link to find the
configuration options and more information about the DWC. But for now,
let’s talk about how the DWC works.

How Does It Work?

Now that we have recognized the need for a new client with more modern
architecture, let's look at how we designed the DWC to realize some of our
previously mentioned goals, starting with improving speed.

Improved Load Time

You may have heard the saying, “You never get a second chance to make a
first impression,” or in web lingo, “The First Contentful Paint is critical.” If a
web page loads faster, the user will have a better experience. BUI’s strategy
is to pass everything over to the client that it will ever need. But, the new
client takes a distinctively different strategic approach. When the user
launches a DWC app, we load just a tiny chunk (only about 7kB) of
JavaScript to bootstrap the session. After that, we dynamically download
individual messages or chunks of JavaScript, on-demand as the application
uses the corresponding functionality. Furthermore, when the server sends
the message defining a BBjButton, it also instructs the client’s browser to
cache the message. This means that the server won't have to transmit the
BBjButton message again to that client unless BASIS updates the control or
the user clears their cache. So not only are subsequent runs of the same
DWC application even faster, but executions of any DWC application on that
client will be faster!

Our data transfer analysis in our browser’s Developer Tools showed that
eliminating the GWT, along with other optimization strategies, had a
significant impact and measurably decreased our app’s load time.

https://web.dev/articles/fcp


Responsive Design

Years ago, computers were primarily desktop machines with monitors that
ran in a few standardized resolutions. That worked well with BBj’s
pixel-oriented positioning because the client’s screen space was predictable,
but today’s users run applications on a variety of devices, operating systems,
and screen sizes. They expect to run web apps on whatever device they
have handy, whether it is a phone, tablet, or laptop. That is one reason the
“Mobile First” principle is so important in product design. And one key to
Mobile First design is Responsive Web Design, which describes sites and
apps that adapt their layout to the user’s browser viewport, like what is
shown in Figure 1. By making use of flow layouts, CSS Grid, CSS Flexbox,
and even media queries, developers can ensure that their applications run
well on the user’s hardware. This leads to increased user adoption, improved
user experience, and ultimately, faster development and easier maintenance
of the codebase.

Figure 1. A Responsive Layout that Changes Dynamically

By default, the new client supports absolute sizes and positions, preserving
the standard BBj behavior from the older BASIS clients such as Visual
PRO/5, BBj GUI, and BBj BUI. However, when you are ready to move to a
responsive app, you can set a window creation flag to take full control of
sizing and positioning with CSS. After that, you can size controls based on
the available screen space and even define multiple layout patterns based on
the screen size or orientation.



When developers define their desired responsive layout via CSS, the client’s
browser takes over all the responsibilities of resizing and repositioning the
application's windows and controls. The BBj program no longer has to
register callbacks for the window's resize events, and all layout changes
occur on the client with no communication required between the client and
the server. This results in faster layout changes that are not affected by
latency and even permits the use of transition effects for smoother
animations.

Improved Styling Capabilities

Like BUI, the DWC offers extensive support for external CSS to customize
the look and feel of BBjControls in web applications. However, many
developers found that writing custom CSS could be a daunting endeavor.
Besides needing to learn the CSS language, it is especially challenging to
debug CSS when the properties and values that you wrote do not have the
desired effect.

Difficulties aside, customers requested the ability to create themes in order
to more easily brand their web apps for their target customers. Keeping
these matters in mind, BASIS completely redesigned CSS styling from the
ground up for the DWC, integrating new concepts such as CSS custom
properties and attributes.

With CSS custom properties, developers can set the value of a CSS property
once and have that value take effect throughout the app. The DWC’s custom
properties cover all aspects of an app’s look and feel and empower
developers to set values to affect their app’s colors, typography, spacing,
borders, and even animations.

Many of the BBjControls in the DWC also offer extended attributes, which
give us even more ways to influence a control. Attributes such as “theme”
and “expanse” let us apply predetermined color themes and sizing properties
to BBj controls, as seen in Figure 2.



Figure 2. DWC Themer, Displaying a Light and Dark Theme

Ready to Go!

Now that you have a better idea of what the DWC offers, you are ready to
take the new client out for a test drive. The DWC is definitely ready for you!

Looking Back

At the beginning of this article, we discussed BASIS’ high-level goals for the
DWC, including reducing an app’s initial load time, adding support for
CSS-based layouts, and improving styling capabilities. We talked about how
you can use CSS to define dynamic layouts for a variety of screen sizes and
orientations. We also covered how you can exploit the power of CSS custom
properties to personalize an application’s appearance. The DWC is ready to
help you launch your BBj graphical applications into a web browser using the
latest and greatest web technologies.

See Also

There's more information available for the DWC, so be sure to check
out some of the following links:

● DWC Documentation
● TechCon DWC Video Part 1
● TechCon DWC Video Part 2
● DWC on the BASIS IDE User Group Wiki
● DWC Flexbox Demo (a tool that helps you interactively design a CSS

flexbox layout strategy resulting in CSS and BBj code)
● Configuration Options (search for instances of “DWC” on this page,

such as LEGACY_FONTS, to identify the relevant configuration options)
● BBj DWC Themer

https://youtu.be/TGcJmsoyVtk?t=1655
https://basishub.github.io/basis-next/#/dwc/
https://www.youtube.com/watch?v=TGcJmsoyVtk&t
https://www.youtube.com/watch?v=sLG-SHeP7z8&t
https://ide-user-group.basis.cloud/doku.php?id=lang
https://us.bbx.kitchen/webapp/DWCFlexbox
https://documentation.basis.cloud/BASISHelp/WebHelp/usr/BBj_Enhancements/stbl_formats_bbj.htm
https://us.bbx.kitchen/webapp/DWCThemer

