Unleashing the Power of SQL EXPLAIN

Take Query Optimization to the Next Level

|
RN
|
VAN
VRO
AR
! \
\
AR

) ie R

By Jeff Ash BASIS Advantage

In the dynamic world of database management, optimizing queries is a
constant pursuit. One indispensable tool in this quest is the SQL EXPLAIN
statement (available in BBj® version 23.00+), a feature that provides a
detailed roadmap of how BBj's SQL engine executes queries. In this article,
we'll explore the nuances of the EXPLAIN statement and unravel its potential
to unveil bottlenecks, enhance query efficiency, and empower developers to
make informed decisions.

Understanding the Basics

At its core, the EXPLAIN statement sheds light on the execution plan of a
query. By delving into the output of this statement, developers can identify
areas where improvements can be made, such as adding or modifying
indexes or optimizing queries for better performance.


https://documentation.basis.cloud/BASISHelp/WebHelp/b3odbc/SQL/SQL_EXPLAIN.htm

Let’s take a look at a practical example:

EXPLAIN SELECT

cust_num, order_num, order_date, first_name, last_name
FROM order_header oh INNER JOIN customer c

ON oh.cust_num = c.cust_num
WHERE last_name = 'Baldrake’

Breaking Down the Results

The output of the EXPLAIN statement resembles a standard ResultSet, with
each row offering valuable insights into the execution plan. Let's decipher
the critical column components found in Figure 1:

Messages |Query Results x

TABLE TABLE_ORDER USABLE_KEY USABLE_KNUM ACTUALLY_USED SCORE
< null = ORDER_HEADER, CUSTOMER < null = =1 false 1657

< null = CUSTOMER, ORDER_HEADER < null = -1 true 61
ORDER_HEADER < null = CUST_NUM 1 true 4
CUSTOMER < null = CUST_NUM 0 false 1
CUSTOMER <null = LAST_MNAME, CUST_NUM 1 true =]
CUSTOMER < null > LAST_MAME, CUST_NUM 1 true 10

Figure 1. Results of EXPLAIN SELECT from the Practical Example

TABLE

Each row has data referring to a single table or table order. Rows 3-6
reference a single table, shown in the TABLE column. Table order does not
apply to these rows, so they have <null> in the TABLE_ORDER column.

TABLE_ORDER

Rows 1 and 2 refer to table order, so they have non-null data in the
TABLE_ORDER column and null data in the TABLE column. Rows referring to
table order provide information about the automatic reordering of tables that
the SQL engine does during optimization (when possible). Note that when
there is a non-null value in this column, the two relevant columns are
ACTUALLY_USED and SCORE. The other columns in the result data do not

apply.



USABLE_KEY

The SQL engine will consider using the index/key in the USABLE_KEY column
during optimization. Each key in a BBx data file, such as an MKEYED,
XKEYED, or VKEYED file, corresponds to an SQL index. Note that the value in
USABLE_KNUM represents the key humber on the file.

The order plays an important role during optimization for keys with multiple
columns. For example, let’s say you have an index with the segments
defined as LAST_NAME, FIRST_NAME and you use a WHERE clause that
refers to a singular segment. The SQL engine can only use the index/key for
optimization if the index/key’s first segment (LAST_NAME) is the referenced
segment in the WHERE clause.

So, when you see an entry in this column, it indicates that this key meets
the criteria necessary to be considered for optimization. However, the SCORE
will determine which one the SQL engine ultimately chooses.

USABLE_KNUM

This column is simply the key number on the underlying data file for the
table that corresponds to the segments shown in the USABLE_KEY column.
See USABLE_KEY for an explanation of how the SQL engine uses this
information.

ACTUALLY_USED

This column contains true or false, indicating whether or not the SQL engine
determined to use the key number shown in USABLE_KNUM for optimization.
When optimizing queries, the SQL engine must choose a single key for
iteration. The primary role of the optimization strategy is to determine which
key (index in SQL terminology) will result in the fewest file-read operations.
This determination is made based on the value in the SCORE column. The
lower the score, the better.

SCORE

The score is a rough estimate of the number of file-read operations required
for processing the query.



Decoding the Score in Detail

The SCORE column is pivotal in determining the optimization strategy. A
lower score indicates fewer file operations, translating to better
performance. To illustrate, let's consider our earlier example:

Row 1: Score - 157 (ORDER_HEADER first, CUSTOMER second)
Row 2: Score - 61 (CUSTOMER first, ORDER_HEADER second)

Regardless of which table order the optimizer chooses, the join will be fast.

However, the WHERE clause provides additional information, indicating that
we're only interested in customers with the LAST_NAME of Baldrake, with no
limiting criteria on the table. So if the ORDER_HEADER table is first, it would
need to look over a record in the ORDER_HEADER table, look up its
corresponding record in the CUSTOMER table, check to see if the
LAST_NAME matches, then iterate this for every record in the
ORDER_HEADER table.

The sample database is small, so we would not see any performance
differences. However, imagine a real-world scenario where the
ORDER_HEADER table contains 1,000,000 records. That would involve a
minimum of 2,000,000 reads to return the results (i.e., one read from
ORDER_HEADER, then one read from CUSTOMER).

With the simple change of placing the CUSTOMER table on the left, you will
see that the optimizer’s change can dramatically increase performance. Due
to the indexing of the CUSTOMER table, the SQL engine can limit the number
of records it reads from the CUSTOMER table to only those that match the
WHERE clause.

Returning to our real-world scenario, suppose only 1,000 records in the
customer table match a LAST_NAME of Baldrake. Placing the CUSTOMER
table first means that the SQL engine can iterate using KNUM 1 (LAST_NAME
and CUST_NUM combined) only looking at 1,000 records in the table on the
left, thus only looking up matches for 1,000 records in the right table. This
results in a total of 2,000 read operations instead of 2,000,000.

Conclusion

While the SQL EXPLAIN statement doesn't provide explicit recommendations,
it equips developers and administrators with invaluable insights into query
optimization. By leveraging this information, one can identify the reasons
behind sluggish queries and explore avenues for performance enhancement.



Consideration of additional filtering criteria and judicious indexing becomes
the key to unlocking the full potential of your database queries. In the
ever-evolving landscape of database optimization, SQL EXPLAIN emerges as
a powerful ally, empowering you to navigate the complexities of query
execution with confidence.

To begin exploring the power of the SQL EXPLAIN statement, install the
latest release of BBi®.



https://basis.cloud/bbj-downloads/
https://basis.cloud/bbj-downloads/

