
Desktop Apps: A Zero Deployment Strategy

By Brian Hipple BASIS Advantage 2023

This latest BASIS Advantage article is the last article in a series that started
with Classpaths and was followed by the new Classloader. Desktop Apps,
first introduced in BBj® 19.20, is the BASIS replacement for Java Web Start
(JWS). JWS is a framework developed by Oracle that allows users to start
Java applications directly from the internet using a web browser. Oracle
deprecated JWS in Java 9, and starting with Java 11, they removed JWS
from their distributions. Since BASIS builds BBj on the Java platform and
many BBj deployments made use of JWS, we needed to find an alternative
and perhaps even an enhanced solution for the BBj community. In this
article, we will provide an overview of Desktop Apps, including why they are
needed, what they are, the benefits they provide, how they work, how
they’ve matured in later revisions, including the latest BBj 23, and how they
fit into BASIS’s Zero Deployment strategy.

The Trouble with JWS
Let’s be honest: JWS was never a perfect solution. System administrators
had to create and manage Java Network Launch Protocol (JNLP) files on the
server, and these application definition files could get quite complicated with
their many different settings—most of which were never needed or used by
BBj applications. JWS also required the generation and inclusion of a Web

BASIS Advantage 2023

https://docs.google.com/document/d/1j9eYCfFsD7qqtcF9VZwrI1qmRd22INoEEsVarF2ywag/edit?usp=sharing
https://docs.google.com/document/d/1r4b4QN1Gp6n-yxgChbcQmHLiSsF4TOvB5Y1HQGxktXg/edit?usp=sharing


Start security certificate to run the application, and the JAR files had to be
signed before the client could download them.

The JnlpExePacker
BASIS provided an interim solution with the JnlpExePacker, a BBj application
that creates native Windows/macOS/Linux applications given a JNLP file, it
includes the necessary BBj JARs and a JRE. When users run the resultant
native application with BBj 19.10, it takes advantage of the new BBj
classloader (see the “Loading with Class” article) to dynamically download
needed classes/files to the client. Any JNLP/BBj/JRE update requires
regeneration and redeployment of the native applications. However, the
JnlpExePacker solution requires JNLP files and, of course, those have all of
the limitations of JWS that we previously mentioned. Therefore, we decided
to work smarter, not harder, and the idea of Desktop Apps was born.

Desktop Apps: The Smarter Solution
When designing Desktop Apps, we wanted to include the concepts that we
liked about the JnlpExePacker and JWS, remove the limitations, and add new
update capabilities. The functionality we incorporated was the
definition/management of applications on the server via the Enterprise
Manager (EM), the initial installation and running of the program via a URL,
and the utilization of the new BASIS classloader to download needed
resources from the server. We removed the limitations of having complicated
JNLP files, the requirement of a security certificate, and the JAR signing. We
also added the ability for updates to Java, BBj, or programs to be
automatically handled by the client, and for all configured applications to be
available from the BBj Jetty home page.

Creating a Desktop App
So, how do you create a Desktop Application? You can do it in two simple
steps:

Step 1: In the EM, specify a JRE for each client-side Operating System;
Windows, macOS, and Linux that your clients use. You only need to do this
once, no matter how many Desktop Apps you will create. Of course, you will
want to update these JREs as new versions become available and supported,
and the Desktop App clients will be automatically updated! Figure 1 displays
the configured JREs in Enterprise Manager.

BASIS Advantage 2023

https://docs.google.com/document/d/1r4b4QN1Gp6n-yxgChbcQmHLiSsF4TOvB5Y1HQGxktXg/edit?usp=sharing


Figure 1. Defining JREs for a Desktop Application in Enterprise Manager

Step 2: Configure the BBj application for the Desktop App to run, including a
unique name, program file, program arguments, working directory,
configuration file, load image (splash-screen) and shortcut images, and BBj
settings. This should be familiar for system administrators as this is almost
the same process that they use to configure a BUI (Web) App. Figure 2
shows the Desktop App definition for Addon.

BASIS Advantage 2023



Figure 2. A Sample Desktop Application in Enterprise Manager

After creating and enabling the Desktop Application, the URL to run the
Desktop App is available from the default Jetty home page, shown in Figure
3, and from the EM’s Applications list.

BASIS Advantage 2023



Figure 3. Defining the Application in Enterprise Manager

When a user clicks on the application link displayed on the Jetty home page
or opens the associated URL in a browser, the Desktop App will be
downloaded, installed, and run on the client machine. During the installation
process, it creates an application on the client along with a desktop shortcut
to subsequently run the Desktop App. Each time a user runs the Desktop
App, it automatically checks for and obtains BBj, JRE, and program
configuration updates from the server. Figure 4 shows the Addon Desktop
app launching as a native application from the user’s desktop shortcut.

BASIS Advantage 2023



Figure 4. AddonSoftware’s Splash Screen

New Functionality with BBj 23
In BBj® 23.00 Desktop App, JRE configuration enhancements were made in
EM, where multiple JREs can now be added at once, only JREs on which BBj
is supported will be allowed, and the version of the JRE and platform will be
automatically determined and displayed. JREs previously added, that the
current version of BBj isn’t supported on, will be displayed in red. Desktop
App client JRE validation has also been added, where clients now perform
JRE validation, and if the version of BBj is not supported on the JRE, a
message will be displayed to the user. There are also more EM configuration
options to control the display load image and text, as well as whether to
show the run message after the initial installation. Remote cache cleanup is
also now available. When a remote client is run (usually as a Desktop App),
a Java class cache is maintained (per BBj version) on the client. This new EM
option Web>App Deployment>Global Settings allows for the removal of older
version cache(s) on the client when a Desktop App is run. Figure 5 shows

BASIS Advantage 2023



the Remote Cache Cleanup option.

Figure 5. Distribution Output Directory and Remote Cache Cleanup Options

The most significant new functionality is the ability to create a Desktop App
distribution, where much like the aforementioned JNLPExePacker, it will
create a directory structure (and compressed archive files, either a zip for
Windows or tar.gz for non-Windows) for each type of JRE configured that can
be used by a client to run the Desktop Application. This option provides an
administrator the ability to deploy these directories/archive files to client
machines in the manner they choose, controlling such things as where they
would like them to be installed, shortcut creation, and customizations. The
distribution is created under the directory specified in the global options (see
Figure 5) when the Build Distribution button is clicked while editing a
Desktop App in EM. Desktop App clients deployed this way will still be
updated when run, so any updates to JREs, BBj, or configuration will be
applied automatically. Figure 6 shows the Build Distribution button and the
message when the distribution is successfully created.

BASIS Advantage 2023



Figure 6. Build Distribution Button Message

Figure 7. Directory and Compressed Archive Files for Each Client Type

BASIS Advantage 2023



Summary
The BUI (Web) client BASIS already delivers on the promise of Zero
Deployment, where the user only needs a browser and doesn't need Java or
BBj installed to run the application.

Do Desktop Apps now also deliver a true Zero Deployment solution for
running a BBj thin client on the desktop? For Windows, this is absolutely the
case. BBj creates the Desktop App as a native Windows executable on the
server and downloads it to the client. No Java is necessary for the client for
initial installation. For macOS and Linux clients, BBj creates an executable
JAR file and sends it to the client thus, a supported version of Java is still
required on the client for initial installation. Therefore we can say that it is a
Zero Deployment solution for Windows clients and subsequent upgrades for
other clients and a “Near”-Zero Initial Deployment solution for non-Windows
platforms.

Desktop Apps provide a straightforward and greatly enhanced deployment
methodology for delivering BBj applications to the desktop that overcomes
all of the disadvantages of Java Web Start.

BASIS Advantage 2023


