Transitioning from NetBeans to the BDT IDE
by Jerry Karasz

Are you a developer trying to deliver improved software with additional functionality, maybe
even under shorter deadlines? Are you tasked to turn out new releases that are robust and
stable on ever-shortening project schedules? These types of everyday stresses make it more
and more worth your time to explore every opportunity for increased productivity. Better
documentation, training, new tools, and time-saving utilities can help make you more productive
and more successful in writing, testing, and deploying solid programs. After all, who doesn’t
want to turn out more work better and faster? One offering that could help make this dream a
reality is the Business BASIC Development Toolkit (BDT) Interactive Development Environment
(IDE) that is available as a set of plug-ins for Eclipse. With a number of productivity-enhancing
features designed to help you deliver better software more quickly, BDT may be just what you
need. But the biggest roadblock may be the transition, as there is bound to be a learning curve
associated with any new tool. After all, you already know how to use the NetBeans BASIS IDE
and you’re comfortable with it. So, how can you determine what benefits you can take
advantage of by moving up to the BDT IDE in Eclipse?

This article provides an overview for developers like you who want to know what BDT has to
offer and how to leverage its advanced features as quickly as possible. It also provides
suggestions and ideas for transitioning an existing BBj® program from the NetBeans IDE to the
BDT IDE by walking through this process using a sample BBj program. The issues and tradeoffs
involved will become obvious as you follow an example BBj program all of the way from its
NetBeans existence until it becomes a new BDT project that can be built, run, and updated.
Since the most recent NetBeans IDE was released as part of BBj 14.22, and BDT is now up to

version 18.20, we will use these development environments to demonstrate the transition. If you
have been working with an earlier BBj/NetBeans IDE environment, you may see some minor
differences from what we present here, but any differences should not be significant. To read
the full tutorial detailing this transition, see the Transitioning from NetBeans to the Eclipse IDE
Guide.

To keep this simple, we'll use a demo program called “Reports” that is installed with both BBj
14.22 and BBj 18.xx (and which should also be available in future BBj releases). This is a
representative BBj program that contains a number of interesting file types, but isn’t so large
that it is too difficult to understand. BB;j installs the example source code for the Reports demo in
<bbjhome>\demos\Reports\, where <bbjhome> is the location where you installed BBj. We
will transition a copy of the Reports demo that we have in C: \Reports\, treating this code as
though it was the source for your program.

The NetBeans BASIS IDE

To transition a BBj program from the NetBeans IDE to the BDT IDE, let's assume that you
already have a computer set up and configured with the NetBeans IDE and that you have a
program you developed there. Our example folder C: \Reports\ appears in NetBeans as seen
in Figure 1.

Filesystems * Runtime

@ "
+-) SALES_BY_MONTH.html_files

images

ADDON_INVOICE. jasper

ADDON_INVOICE. jrxml

ADDON_INVOICE_TOTAL.jasper

ADDON_INVOICE_TOTAL. jrxml

ADDON_LINE_ITEM.jasper

ADDON_LINE_ITEM.jrsml

ADDON_SALES_DETAIL.jasper

ADDON_SALES_DETAIL.jrymi

CUST_DETAIL.jasper

CUST _DETAIL.jrxml

CachedReports.bbj

DryCanyonLOGO.png

ITEM_DESCRIPTION_SUBREPORT. jasper

ITEM_DESCRIPTION_SUBREPORT.jrxml

ITEM_DESCRIPTION_SUBREPORT_SQL.jasper

ITEM_DESCRIPTION_SUBREPORT _SQL.jrxml v

< >

Local Filesystem

U

FEER PR

Figure 1. NetBeans Filesystems

https://docs.google.com/document/d/1ZzIQDSuknfFpLMYdSmjeegCFDL_qpObDwD2sHZaOf1M/pub
https://docs.google.com/document/d/1ZzIQDSuknfFpLMYdSmjeegCFDL_qpObDwD2sHZaOf1M/pub

Setting Up Eclipse and the BDT IDE

One note of caution: install Eclipse and the BDT plug-ins on a separate computer from the
NetBeans IDE because the two IDEs require different versions of Java and different versions of
BBj. The NetBeans IDE requires Java 7 and BBj 14.22, while the BDT IDE requires Java 8 or
newer, and a newer BBj. The two Java/BBj combinations are incompatible.

Follow the instructions on Preparing Eclipse for BASIS-Provided Plug-ins to install Eclipse and
the BDT plug-ins on a computer with Java 8 or newer. When choosing which URL to use for the
BDT plug-ins, we used http://plugins.basis.com/bdt/18xx from the Eclipse Plug-ins
page. To make sure that your setup is complete and correct, follow the instructions on Creating
Your First BBj Project and create a BBj Project in BDT. Once you are successful, you can begin
transitioning your existing program.

Transitioning the BBj Program

All of the source code for your program must be available to the BDT development environment
as a completely separate copy (not shared). For simplicity, we used the most common case
where your source code is stored on the NetBeans IDE development computer (in isolated local
storage). We copied the source code to hard disk on the BDT IDE computer via a USB flash
drive.

Once you create a new empty BBj Project named Reports, it is ready for the source code.
Import the code using BDT’s Import File System option by right-clicking the Reports project and
selecting Import... Then expand the Reports project in the BDT Explorer. You should now see
all of the files from the Reports demo in the BDT Explorer as shown in Figure 2. Remember this
is a copy of the source, not the original which remains on the NetBeans IDE computer.

http://documentation.basis.com/BASISHelp/WebHelp/eclipse-bdt/getting_started/preparing_eclipse.htm
http://www.basis.com/eclipseplug-ins
http://documentation.basis.com/BASISHelp/WebHelp/eclipse-bdt/getting_started/creating_your_first_bbj_project.htm
http://documentation.basis.com/BASISHelp/WebHelp/eclipse-bdt/getting_started/creating_your_first_bbj_project.htm

t= BOT Explorer 2 B% ¥ = 8

BBj Installation (C:\bbj) A
~ = Reports
EiLBREV
1 images
% SALES_BY_MONTH.html_files
mgd ADDON_INVOICE TOTAL jasper
. ADDON_INVOICE_ TOTAL jreml

Y YT P sl u

111 '£||I__’.-'I|I__-’:I LA L NVLIL Il:JIILFl'SIII.; er

II"- Wy 1

= '£' II-_:I |I__-’:I '::I:'.."-'I_l NV E ,'I rxm :

Ly
@ bar_chart.png
& CachedReports.bbj

P —
|

CUST_DETAIL jasper

M

CUST_DETAILjrxml

Walels —

DrnyCanyonLOGO.png

B

@ info.hitml

Figure 2. The Imported Reports Code in BDT’s BBj Project

Now that our BBj program source code is in a BBj Project in the BDT IDE, we are ready to work
with it there. There are a number of common commands we can execute on our Reports BBj
Project such as edit, save, compile/tokenize, debug, execute as a GUI program, and execute as
a BUI program.

Remember that the BDT Perspective and the BDT Explorer view are key. Most of BDT’s
functionality is only available when using these Eclipse tools, and you learned about them
earlier in the Creating Your First BBj Project document.

BDT offers three different ways to launch a BBj program: executing it as a Graphical User
Interface (GUI) program, executing it as a GUI program in the debugger, or executing it as a
Browser User Interface (BUI) program. For simplicity, we will demonstrate launching our
program as a GUI program. For more details on launch options, see the full Transitioning from
NetBeans to the Eclipse IDE Guide.

http://documentation.basis.com/BASISHelp/WebHelp/eclipse-bdt/getting_started/creating_your_first_bbj_project.htm
https://docs.google.com/document/d/1ZzIQDSuknfFpLMYdSmjeegCFDL_qpObDwD2sHZaOf1M/pub
https://docs.google.com/document/d/1ZzIQDSuknfFpLMYdSmjeegCFDL_qpObDwD2sHZaOf1M/pub

To launch our BBj program as a GUI application from the BDT Explorer, expand the Reports
project and right-click the Reports. src file. Then, select Run As > BBj Program (see Figure
3).

gl rﬂ_ Coverage As >

2l OSAS Run As D} > 0 1BBjProgram Alt+G
Mg C Debug As LS Run Configurations...

[al (‘C S Source >

g (Team >

ad OSAS SALE! Compare With 3

EE Reports.arc Replace With >

B Reports.gbf Properties Alt+Enter

B Reports.src —

Figure 3. Running Reports. src as a BBj Program

BDT builds the project and then opens a BBj SysConsole window and a BBj Reports window
similar to Figure 4 (this may take a moment or two).

Settings Edit Print Help

7 BBj Reports - O >
Select a Report: | ADDON_INVOICE w |2 Run Selected Report

[i_f Designing Your Own Reports] Mamespace Cache

Jaspersoft Studio is the free, open source, eclipse-based report designer
for JasperReports and JasperReports Server. Create very sophisticated layouts
containing charts, images, subreports, crosstabs and much more. Access your
data through JOBC, TableModels, JavaBeans, XML, Hibernate, C5V, and
custom sources. Then publish your reports as PDF, RTF, XML, XLS, G5V,
HTML, XHTML, text, DOCX, or OpenOffice.

Integrated with BBj's reporting utilities

* View, Search, Print, Save, and Export any Jasper Report using BEj's

O e me | Bealid

Download Jaspersoft Studio

Figure 4. The Reports. src Windows

When you are satisfied that it is running normally, close both displays.

Now let’s talk about editing BBj projects in BDT. You can edit at the project level (add a new
project, edit the properties of an existing project, or add a new file or folder to an existing project
- whether in the project root folder or in a sub-folder). You can also edit at the file level (add
content to an existing file, edit the properties of an existing file, or delete an existing file). We
can’t demonstrate every edit option here, but let's demonstrate that our new BBj Project is valid
by doing three simple editing examples: a BBj source file, an ARC resource file, and a GBF
event file.

Editing a BBj Source File

Let’s edit the Reports. src file to demonstrate how to make and view code changes. But doing
so carries with it a warning: Reports. src is a generated file, created for the Reports demo
when AppBuilder built the Reports.gbf file. Any changes we make to this copy of

Reports. src will be overwritten the next time AppBuilder builds Resource.gbf. In a
real-world environment, use extreme caution editing BBj source files created by AppBuilder;
instead, you should edit Reports.gbf and build the GBF file, renaming the resulting file as
desired.

For the purposes of this demonstration, we don’t care if our changes are overwritten later, so
we’ll go ahead and edit it in a BBj CodeEditor. Figure 5 displays the CodeEditor for
Reports.src.

B¥ Reports.src 22 = 0

L—hem ' Generated by ProcessEventsBuilder (November 11, 2015 at 13:12:54) A
rem ' To modify this program, edit the .gbf project file in AppBuilder.

gb_ sysgui$ = "X0"

gb_ sysgui = unt

open (gb_ sysgui)gb sysgui$

gb_ sysgui! = bbjapi().getSysGui/()
dim gb_ event$:tmpl(gb sysgui)
gb__handle = ("Reports.arc")
gosub gb_ init win 101

gosub Init

PR T T

I I
= D o

Drocess events

7 R E 107 -
gb 1nit win 101:

gb::win_iﬂl!_= gb_ sysgui!.createTopLevelWindow(gb handle,101)
17 gb win 101!.getControl(0).setCallback(gb_ sysgui!.ON WINDOW MOVE,"W101l CO WIN MOVE

I
e R Y R T o

8 gb_ win 101!.getControl(0).setCallback(gb sysgui!.ON RESIZE,"W101l CO WIN RESIZE")
19 gb win 101!.getControl(0).setCallback(gb_ sysgui!.ON CLOSE,"W101l CO WIN CLOSE")

20 gb_win 101!.getControl(103).setCallback(gb_ sysgui!.ON BUTTON PUSH,"W101l C103 PUSH
21 gb_win 101!.getControl (104).setCallback(gb_sysgui!.ON BUTTON PUSH,"W101l C104 PUSH
22 gb_win 101!.getControl (105) .getControl (101).setCallback(gb sysgui!.ON BUTTON PUSH

)
))

3 gb_ win 101!.getControl (107).getControl (102).setCallback(gb sysgui!.ON BUTTON PUSH
24 gb_ win 101!.getControl (107).getControl (104) .setCallback(gb sysgui!.ON BUTTON PUSH
25 gb_ win 101!.getControl (107).getControl (105).setCallback(gb sysgui!.ON LIST CHANGE
26 gb_ win 101!.getControl (107).getControl (108).setCallback(gb sysgui!.ON EDIT MODIFY
27 gb_ win 101!.getControl (107) .getControl (110).setCallback(gb sysgui!.ON EDIT MODIFY

8 return
29
30 w101 CO WIN MOVE: v

£ >

Figure 5. Reports. src in a BBj CodeEditor

Right after line 16 that contains the following code:

gb__win 101! = gb__sysgui!.createTopLevelWindow(gb__handle,101)
insert a new line with the following code:

gb_win 101!.setTitle("New BBj Reports Title")
This will override the previous window title so that we can tell that our change is used. Save this
change and click the [Run As...] toolbar button (see Figure 6) to run our modified
Reports.src program.

Qi 5

% | Run Reports.src

Figure 6. The ‘Run’ Toolbar Button for Reports.src

You should see the GUI program run showing the new title, “New BBj Reports Title”, indicating
that our changes were applied and run. Once this happens, you can dismiss the BBj Reports
application and either revert your changes or leave the modified code, as you like.

Editing an ARC Resource File

Let’s edit our Reports.arc (ARC resource) file to demonstrate how to use WindowBuilder. In
the BDT Explorer view, double-click the Reports.arc file. to open a WindowBuilder ARC

Editor. Click “101 NamespaceCacheWindow”, and BDT graphically displays that TLC

(ChildWindow) as captured in Figure 7.

0 101 NamespaceCacheWindow &
! Structure

s Components

+ 0 101 NamespaceCacheWindow

100 UseNamespaceCacheCheckbox

[E% 101 List Box

102 RemoveButton

A 103 Static Text

104 RefreshButton

=4 105 CacheTypelistButton
A 106 Static Text

A 107 Static Text

st 108 Edit Control

A 109 Static Text

=81 110 Edit Control

i&i

> A

I Properties
hasBorder [false
horizontalScroll [Ifalse
keyboardNavig.. [false
onDropTypes 0]
opaque [ltrue
raisedEdge [Cfalse
shortCue
unigqueNames [false
units
verticalScroll [false
visible_ [true

[=] Design %= ARC Source

EE| Y f B
4 Palette ——
(= BBj Menu items

= Menultem

= CheckableMenultem
= Separator

(= BBj Pointers

' ®PopupMenuPointer

% MenuBarPtr
+AChildWindowPtr

| = BBj Controls

1l BarChart
[Button
[l CheckBox

. [ElColorChooser

T DataBoundGrid
[=ZICEdit

ltl EditBox

[EditBoxSpinner
IFIFileChooser
L£lFontChooser
"|GroupBox

] HtmIView

[InputD

[3 InputDSpinner
%] InputE

~

Figure 7. A Child Window from Reports.arc in a WindowBuilder ARC Editor

=
ERXBIEESTHh|Zn]|WE|EEH

[JUse Namespace Cac...
Type BasisListBu.. ~ Prefix BasisEditBox Suffix BasisEditBox
Reports in cache:
|BasisListBox

Refresh Remove

>

Select the ARC Source tab at the bottom of the WindowBuilder ARC Editor at any time to view
the read-only ARC text that will be written out to the .arc file when you save (see Figure 8).

= Reports.arc i

17

86 NOT OPAQUE

a7 END

88

29 END

a8

91 CHTILD-WINDOW 181 @ @ 563 236

92 BEGIN

a3 BORDERLESS

94 EVENTMASK 3287287492

as NAME “"NamespaceCachelWindow”

9B NOT OPAQUE

97 CHECKBOX 1@@, "Click me!", 2@, 11, 19@, 25
98 BEGIN

99 FONT “Arial” 1@

lee NAME “UseNamespaceCacheCheckbox™
161 NOT OPAQUE

1le2 END

1le3

184 LISTBOX 181, "", 17, 96, 536, 94
185 BEGIN

186 CLIENTEDGE

1e7 FONT "Arial" 1@

les MULTISELECT

189 NAME “List Box"

116 END

111

112 BUTTON 182, "Remove", 463, 211, 98, 27
113 BEGIN

114 FONT “Arial” 1@

115 NAME "RemoveButton”|

116 END

117

118 STATICTEXT 183, "Reperts in cache:", 28, 78, 138,
119 BEGIN

128 FONT "Arial" 1@

121 NAME "Static Text"

122 NOT OPAQUE

123 END

124

125 BUTTON 1@4, "Refresh”, 367, 211, 9@, 27
126 BEGIN

127 FONT “Arial” 1@

EZ] Design ARC Source

Figure 8. The ARC Source Tab Showing a Child Window’s ARC Text

Back in the Design tab, select “100 UseNamespaceCacheCheckbox” in the Components pane.
Notice that the Properties display now shows the properties for the checkbox. Edit the Text
property there and change the text to “Check Me!” as shown in Figure 9.

= Properties
Enabled true
Focusable [Ftrue
Font "Anal" 10

Foreground ... []«default=
Group Tabs | [Jfalse
Horizontal Al.. Left

o 100

Long Cue

Marne UseMamespaceCach...
Opague [Jfalse

Popup Menu

Raised Edge | [false

Short Cue

Tab Traversa... | [#]true

Visible [true

@:

Figure 9. Editing the ‘Text’ Property

Save this change and click the [Run As...] toolbar button to run our modified Reports.src
code. Select the Namespace Cache tab, and examine the checkbox in the upper left of the tab.
Notice that it now shows “Check Me!” instead of “Use Namespace Cache” (Figure 10).

=] BBj Reporis

Select a Report: ADDON_INVOICE v |3 Run Selected Report

[y Designing Your Own Reports 1= Namespace Cache

Type: Global v Prefix: Suffix:

Reports in cache:

“Z Refresh @ Remove

Figure 10. Viewing Our Edited CheckBox Text

Dismiss the BBj Reports application, and either revert your change to the checkbox or leave it,
as you like.

Editing a GBF Event File

Finally, let’s edit our Reports.gbf (AppBuilder GBF event) file to demonstrate how to use
AppBuilder. We’ll change the event behavior when the user clicks the [Refresh] button on the
Use Namespace Cache tab. In the BDT Explorer view, double-click the Reports.gbf entry to
open an AppBuilder GBF editor that displays the configuration for that file as shown in Figure
11.

10

B Reports.gbf 2 =
Resource File: “Reports/Reports.arc Browse...

Application Reports

Code Generation: Process Events ~

Development | C:\eclipse-workspaces\bbj-demos\Reports),

Configuration

Figure 11. Appbuilder GBF Editor

BDT also opens two other views - the BDT ARC Inspector and the BDT Explored Objects. In the
BDT ARC Inspector view, scroll down to the “107 (ChildWindowPtr):->101” entry and expand it.
Select the “101.107->104 RefreshButton - BUTTON” entry under it following Figure 12.

B Console = Progress [%] Problems < Search J=| Tasks W™ BOT ARC Inspector 52 N® BOT Explored Objects = 0

EE ¥

~ [| 101 Reports - WINDOW A

w 40 105 (ChildWindowPtr):-= 100
[zl 101.105-=>100 HtmView - HTMLVIEWIFX
101.105-> 101 downloadiReports - BUTTON
A 101.103->102 Static Text - STATICTEXT

~ +0 107 (ChildWindowPtr):-> 101
101.107- > 100 UseMamespaceCacheCheckbox - CHECKBOX
€3 101.107->101 List Box - LISTBOXSCROLLPAME
101.107->102 RemoveButton - BUTTON
A 101.107-> 103 Static Text - STATICTEXT
101.107-> 104 RefreshButton - BUTTON
101.107-> 105 CacheTypelistButton - LISTEUTTON
A 101.107-> 106 Static Text - STATICTEXT

Figure 12. Selecting the RefreshButton in the BDT ARC Inspector
Then in the BDT Explored Objects view, click on the PUSH_BUTTON entry in the Registered

Events list. Figure 13 shows that as soon as you click on a registered event, BDT opens a new
tab in the Reports.gbf editor window titled after the control and event you have selected.

11

& *Reports.gbf 2 = g

gosub RefreshCachedReports

Configuration | 101.107- =104 RefreshButton - BUTTON : PUSH_BUTTON &2

‘*; Progress (2! Problems < Search v Tasks W*BDT ARC Inspe.. WEBDT Explored .. = — O

Unregistered Events Reqgistered Events
]LOST_FOCUS R JPUSH_BUTTON

(=] DROP_TARGET_DROP

(=l DRAG_SOURCE_DROP >
=l FORM_VALIDATION

[%REQUEST_POPUP <
ZIMOUSE_ENTER

[ZIMOUSE_EXIT

[/ GOT_FOCUS v

Figure 13. The Code for the PUSH_BUTTON Event

In this case, the event handler code consists of one line:

gosub RefreshCachedReports
In the Reports.gbf editor’s tab for the PUSH_BUTTON event, add the following line of code:

x = MsgBox ("All cached reports refreshed!")
to match Figure 14.

B *Reports.gbf &2

gosub RefreshCachedReports
X = ("All cached reports PE‘FPeshedl"}l

Configuration | 101.107-=104 RefreshButton - BUTTON : PUSH_BUTTON &2
Figure 14. Editing the Code for the PUSH_BUTTON Event

Save this change, and click the [Build the active .gbf file] toolbar button (see Figure 15) to build
Reports.gbf and generate new code.

12

=
Figure 15. The [Build the active .gbf file] Toolbar Button

Once the progress window disappears, building is complete. By default, AppBuilder builds .bbx

output files that are tokenized, so you will now find a new Reports.bbx file in your project
folder. Note: Eclipse does not always report “new files” to plug-ins when they appear, so you

may need to manually refresh the Reports BBj Project. To do so in the BDT Explorer, right-click
the Reports project entry and select Refresh (or hit the [F5] key). You will then see an updated

listing as shown in Figure 16.

S| Reports.arc
B Reports.bbx
C& Reports.ghf
B Reports.src

1 ES BY

il SALCs O A l_-_J'_r'___'.-'.-_'_?f"'

Figure 16. The Updated Reports Project’s File List in the BDT Explorer

The Reports.err file in this case should be empty (no errors were encountered building the
GBF), so you can either delete it or ignore it. To see our new event code executed, right-click
Reports.bbx and select Run As > BBj Program. Once the BBj Reports display appears,
select the Namespace Cache tab. Click the [Refresh] button, and our new message box
appears similar to Figure 17 below.

13

Select a Report: | ADDON_INVOICE w |2 Run Selected Report

lii Designing Your Own Reports 1= Namespace Cache

I
[Check me! C/eclipse-workspaces/bbj-de.. X

Type: Global
All cached reports refreshed!

Reports in cache:

“Z Refresh Rem

4
=]
(T

Figure 17. The PUSH_BUTTON Event's Message Box

Dismiss the BBj Reports application, and either revert your change to the PUSH_BUTTON
event code or leave it, as you like.

Where Do You Go From Here?

As you have seen, there are many aspects of the BDT IDE that provide significant productivity
enhancements - from making it quicker and easier to write correct code, to finding and fixing
bugs, to creating tokenized output files for deployment. We have presented only a few of the
ways you can use the BDT IDE to improve your BBj development. There are too many details to
cover them all in one article, but for more information check out the much more detailed tutorial,
Transitioning from NetBeans to the Eclipse IDE Guide. There you will find tips, tricks, and
images, together with a Frequently Asked Questions (FAQs) section.

If, after examining the tutorial, you find that you have more questions, or that you are interested
in applying what you have learned here to your own programs, here are some additional
resources you may find helpful in your efforts to transition to BDT:
e For helpful discussions related to either the NetBeans or BDT IDEs, use the
ide-user-group Google group. BASIS engineers also participate in these discussions.
e The IDE User Group wiki site is available as a developer community resource for sharing

documents, links, source code, examples, images, or other artifacts that are useful with
either IDE. Occasionally BASIS also adds links or other information to the wiki site that
are helpful.

14

https://docs.google.com/document/d/1ZzIQDSuknfFpLMYdSmjeegCFDL_qpObDwD2sHZaOf1M/pub
https://groups.google.com/a/basis.com/forum/#!forum/ide-user-group
https://ide-user-group.basis.com/doku.php?id=start

To learn about accessing and using these resources, see BASIS’ Discussion Forums page.

As you can see, it isn’t difficult to move your existing BBj program files from the NetBeans IDE
to the BDT IDE. And once your programs are in BDT, maintaining them is easy and efficient.
Give the BDT IDE a try and see for yourself!

15

http://www.basis.com/discussion-forums

