

Transitioning from NetBeans to the BDT IDE

by Jerry Karasz

Are you a developer trying to deliver improved software with additional functionality, maybe
even under shorter deadlines? Are you tasked to turn out new releases that are robust and
stable on ever-shortening project schedules? These types of everyday stresses make it more
and more worth your time to explore every opportunity for increased productivity. Better
documentation, training, new tools, and time-saving utilities can help make you more productive
and more successful in writing, testing, and deploying solid programs. After all, who doesn’t
want to turn out more work better and faster? One offering that could help make this dream a
reality is the Business BASIC Development Toolkit (BDT) Interactive Development Environment
(IDE) that is available as a set of plug-ins for Eclipse. With a number of productivity-enhancing
features designed to help you deliver better software more quickly, BDT may be just what you
need. But the biggest roadblock may be the transition, as there is bound to be a learning curve
associated with any new tool. After all, you already know how to use the NetBeans BASIS IDE
and you’re comfortable with it. So, how can you determine what benefits you can take
advantage of by moving up to the BDT IDE in Eclipse?

This article provides an overview for developers like you who want to know what BDT has to
offer and how to leverage its advanced features as quickly as possible. It also provides
suggestions and ideas for transitioning an existing BBj​®​ program from the NetBeans IDE to the
BDT IDE by walking through this process using a sample BBj program. The issues and tradeoffs
involved will become obvious as you follow an example BBj program all of the way from its
NetBeans existence until it becomes a new BDT project that can be built, run, and updated.
Since the most recent NetBeans IDE was released as part of BBj 14.22, and BDT is now up to

1

version 18.20, we will use these development environments to demonstrate the transition. ​If you
have been working with an earlier BBj/NetBeans IDE environment, you may see some minor
differences from what we present here, but any differences should not be significant. ​To read
the full tutorial detailing this transition, see the ​Transitioning from NetBeans to the Eclipse IDE
Guide​.

To keep this simple, we’ll use a demo program called “Reports” that is installed with both BBj
14.22 and BBj 18.xx (and which should also be available in future BBj releases). This is a
representative BBj program that contains a number of interesting file types, but isn’t so large
that it is too difficult to understand. BBj installs the example source code for the Reports demo in
<bbjhome>\demos\Reports\​, where ​<bbjhome>​ is the location where you installed BBj. We
will transition a copy of the Reports demo that we have in ​C:\Reports\​, treating this code as
though it was the source for your program.

The NetBeans BASIS IDE
To transition a BBj program from the NetBeans IDE to the BDT IDE, let’s assume that you
already have a computer set up and configured with the NetBeans IDE and that you have a
program you developed there. Our example folder ​C:\Reports\​ appears in NetBeans as seen
in ​Figure 1​.

Figure 1.​ NetBeans Filesystems

2

https://docs.google.com/document/d/1ZzIQDSuknfFpLMYdSmjeegCFDL_qpObDwD2sHZaOf1M/pub
https://docs.google.com/document/d/1ZzIQDSuknfFpLMYdSmjeegCFDL_qpObDwD2sHZaOf1M/pub

Setting Up Eclipse and the BDT IDE
One note of caution:​ install Eclipse and the BDT plug-ins on a separate computer from the
NetBeans IDE because the two IDEs require different versions of Java and different versions of
BBj. The NetBeans IDE requires Java 7 and BBj 14.22, while the BDT IDE requires Java 8 or
newer, and a newer BBj. The two Java/BBj combinations are incompatible.

Follow the instructions on ​Preparing Eclipse for BASIS-Provided Plug-ins​ to install Eclipse and
the BDT plug-ins on a computer with Java 8 or newer. When choosing which URL to use for the
BDT plug-ins, we used ​http://plugins.basis.com/bdt/18xx​ from the ​Eclipse Plug-ins
page. To make sure that your setup is complete and correct, follow the instructions on ​Creating
Your First BBj Project​ and create a BBj Project in BDT. Once you are successful, you can begin
transitioning your existing program.

Transitioning the BBj Program
All of the source code for your program must be available to the BDT development environment
as a completely separate copy (not shared). For simplicity, we used the most common case
where your source code is stored on the NetBeans IDE development computer (in isolated local
storage). We copied the source code to hard disk on the BDT IDE computer via a USB flash
drive.

Once you create a new empty BBj Project named Reports, it is ready for ​the source code.
Import the code using BDT’s Import File System option by right-clicking the Reports project and
selecting ​Import...​ Then e​xpand the Reports project in the BDT Explorer. ​You should now see
all of the files from the Reports demo in the BDT Explorer as shown in ​Figure 2​. Remember this
is a copy of the source, not the original which remains on the NetBeans IDE computer.

3

http://documentation.basis.com/BASISHelp/WebHelp/eclipse-bdt/getting_started/preparing_eclipse.htm
http://www.basis.com/eclipseplug-ins
http://documentation.basis.com/BASISHelp/WebHelp/eclipse-bdt/getting_started/creating_your_first_bbj_project.htm
http://documentation.basis.com/BASISHelp/WebHelp/eclipse-bdt/getting_started/creating_your_first_bbj_project.htm

Figure 2.​ The Imported Reports Code in BDT’s BBj Project

Now that our BBj program source code is in a BBj Project in the BDT IDE, we are ready to work
with it there. There are a number of common commands we can execute on our Reports BBj
Project such as edit, save, compile/tokenize, debug, execute as a GUI program, and execute as
a BUI program.

Remember that the BDT Perspective and the BDT Explorer view are key. Most of BDT’s
functionality is only available when using these Eclipse tools, and you learned about them
earlier in the ​Creating Your First BBj Project​ document.

BDT offers three different ways to launch a BBj program: executing it as a Graphical User
Interface (GUI) program, executing it as a GUI program in the debugger, or executing it as a
Browser User Interface (BUI) program. For simplicity, we will demonstrate launching our
program as a GUI program. For more details on launch options, see the full ​Transitioning from
NetBeans to the Eclipse IDE Guide​.

4

http://documentation.basis.com/BASISHelp/WebHelp/eclipse-bdt/getting_started/creating_your_first_bbj_project.htm
https://docs.google.com/document/d/1ZzIQDSuknfFpLMYdSmjeegCFDL_qpObDwD2sHZaOf1M/pub
https://docs.google.com/document/d/1ZzIQDSuknfFpLMYdSmjeegCFDL_qpObDwD2sHZaOf1M/pub

To launch our BBj program as a GUI application from ​the BDT Explorer, expand the Reports
project and right-click the ​Reports.src​ file. Then, select ​Run As > BBj Program​ (see ​Figure
3​).

Figure 3.​ Running ​Reports.src​ as a BBj Program

BDT builds the project and then opens a BBj SysConsole window and a BBj Reports window
similar to ​Figure 4​ (this may take a moment or two).

Figure 4.​ The ​Reports.src​ Windows

When you are satisfied that it is running normally, close both displays.

5

Now let’s talk about editing BBj projects in BDT. You can edit at the project level (add a new
project, edit the properties of an existing project, or add a new file or folder to an existing project
- whether in the project root folder or in a sub-folder). You can also edit at the file level (add
content to an existing file, edit the properties of an existing file, or delete an existing file). We
can’t demonstrate every edit option here, but let’s demonstrate that our new BBj Project is valid
by doing three simple editing examples: a BBj source file, an ARC resource file, and a GBF
event file.

Editing a BBj Source File
Let’s edit the ​Reports.src​ file to demonstrate how to make and view code changes. But doing
so carries with it a ​warning:​ ​Reports.src​ is a generated file, created for the Reports demo
when AppBuilder built the ​Reports.gbf​ file. Any changes we make to this copy of
Reports.src​ will be overwritten the next time AppBuilder builds ​Resource.gbf​.​ In a
real-world environment, use extreme caution editing BBj source files created by AppBuilder;
instead, you should edit ​Reports.gbf​ and build the GBF file, renaming the resulting file as
desired.

For the purposes of this demonstration, we don’t care if our changes are overwritten later, so
we’ll go ahead and edit it in​ a BBj CodeEditor. ​Figure 5​ displays the CodeEditor for
Reports.src​.

6

Figure 5.​ ​Reports.src​ in a BBj CodeEditor

Right after line 16 that contains the following code:

gb__win_101! = gb__sysgui!.createTopLevelWindow(gb__handle,101)

insert a new line with the following code:
gb__win_101!.setTitle("New BBj Reports Title")

This will override the previous window title so that we can tell that our change is used. Save this
change and click ​the [Run As…] toolbar button (see ​Figure 6​) to run our modified
Reports.src​ program.

Figure 6.​ The ‘Run’ Toolbar Button for ​Reports.src
You should see the GUI program run showing the new title, “New BBj Reports Title”, indicating
that our changes were applied and run. Once this happens, you can dismiss the BBj Reports
application and either revert your changes or leave the modified code, as you like.

7

Editing an ARC Resource File
Let’s edit our ​Reports.arc​ (ARC resource) file to demonstrate how to use WindowBuilder. ​In
the BDT Explorer view, double-click the ​Reports.arc​ file. to open a WindowBuilder ARC
Editor. Click “101 NamespaceCacheWindow”, and BDT graphically displays that TLC
(ChildWindow) as captured in ​Figure 7​.

Figure 7.​ A Child Window from ​Reports.arc​ in a WindowBuilder ARC Editor

Select the ARC Source tab at the bottom of the WindowBuilder ARC Editor at any time to view
the read-only ARC text that will be written out to the .arc file when you save (see ​Figure 8​).

8

Figure 8.​ The ARC Source Tab Showing a Child Window’s ARC Text

Back in the Design tab, select “100 UseNamespaceCacheCheckbox” in the Components pane.
Notice that the Properties display now shows the properties for the checkbox. Edit the Text
property there and change the text to “Check Me!” as shown in ​Figure 9​.

9

Figure 9.​ Editing the ‘Text’ Property

Save this change and click ​the [Run As…] toolbar button to run our modified ​Reports.src
code. Select the Namespace Cache tab, and examine the checkbox in the upper left of the tab.
Notice that it now shows “Check Me!” instead of “Use Namespace Cache” (​Figure 10​).

Figure 10.​ Viewing Our Edited CheckBox Text

Dismiss the BBj Reports application, and either revert your change to the checkbox or leave it,
as you like.

Editing a GBF Event File
Finally, let’s edit our ​Reports.gbf​ (AppBuilder GBF event) file to demonstrate how to use
AppBuilder. We’ll change the event behavior when the user clicks the [Refresh] button on the
Use Namespace Cache tab​. ​In the BDT Explorer view, double-click the ​Reports.gbf​ entry to
open an AppBuilder GBF editor that displays the configuration for that file as shown in ​Figure
11​.

10

Figure 11.​ Appbuilder GBF Editor

BDT also opens two other views - the BDT ARC Inspector and the BDT Explored Objects. In the
BDT ARC Inspector view, scroll down to the “107 (ChildWindowPtr):->101” entry and expand it.
Select the “101.107->104 RefreshButton - BUTTON” entry under it following ​Figure 12​.

Figure 12.​ Selecting the RefreshButton in the BDT ARC Inspector

Then in the BDT Explored Objects view, click on the PUSH_BUTTON entry in the Registered
Events list. ​Figure 13 ​shows that as soon as you click on a registered event, BDT opens a new
tab in the ​Reports.gbf​ editor window titled after the control and event you have selected.

11

Figure 13.​ The Code for the PUSH_BUTTON Event

In this case, the event handler code consists of one line:

gosub RefreshCachedReports

In the ​Reports.gbf​ editor’s tab for the PUSH_BUTTON event, add the following line of code:
x = MsgBox("All cached reports refreshed!")

to match ​Figure 14​.

Figure 14.​ Editing the Code for the PUSH_BUTTON Event

Save this change, and click ​the [Build the active .gbf file] toolbar button (see ​Figure 15​) to build
Reports.gbf​ and generate new code.

12

Figure 15.​ The ​[Build the active .gbf file] Toolbar Button

Once the progress window disappears, building is complete. By default, AppBuilder builds .bbx
output files that are tokenized, so you will now find a new ​Reports.bbx​ file in your project
folder. ​Note:​ Eclipse does not always report “new files” to plug-ins when they appear, so you
may need to manually refresh the Reports BBj Project. To do so in the BDT Explorer, right-click
the Reports project entry and select Refresh (or hit the [F5] key). You will then see an updated
listing as shown in ​Figure 16​.

Figure 16.​ The ​Updated Reports Project’s File List in the BDT Explorer

The ​Reports.err​ file in this case should be empty (no errors were encountered building the
GBF), so you can either delete it or ignore it. To see our new event code executed, right-click
Reports.bbx​ and select ​Run As > BBj Program​. Once the BBj Reports display appears,
select the Namespace Cache tab. Click the [Refresh] button, and our new message box
appears similar to ​Figure 17​ below.

13

Figure 17.​ The PUSH_BUTTON Event’s Message Box

Dismiss the BBj Reports application, and either revert your change to the PUSH_BUTTON
event code or leave it, as you like.

Where Do You Go From Here?
As you have seen, there are many aspects of the BDT IDE that provide significant productivity
enhancements - from making it quicker and easier to write correct code, to finding and fixing
bugs, to creating tokenized output files for deployment. We have presented only a few of the
ways you can use the BDT IDE to improve your BBj development. There are too many details to
cover them all in one article, but for more information check out the much more detailed tutorial,
Transitioning from NetBeans to the Eclipse IDE Guide​. There you will find tips, tricks, and
images, together with a Frequently Asked Questions (FAQs) section.

If, after examining the tutorial, you find that you have more questions, or that you are interested
in applying what you have learned here to your own programs, here are some additional
resources you may find helpful in your efforts to transition to BDT:

● For helpful discussions related to either the NetBeans or BDT IDEs, use the
ide-user-group​ Google group. BASIS engineers also participate in these discussions.

● The ​IDE User Group wiki site​ is available as a developer community resource for sharing
documents, links, source code, examples, images, or other artifacts that are useful with
either IDE. Occasionally BASIS also adds links or other information to the wiki site that
are helpful.

14

https://docs.google.com/document/d/1ZzIQDSuknfFpLMYdSmjeegCFDL_qpObDwD2sHZaOf1M/pub
https://groups.google.com/a/basis.com/forum/#!forum/ide-user-group
https://ide-user-group.basis.com/doku.php?id=start

To learn about accessing and using these resources, see BASIS’ ​Discussion Forums​ page.

As you can see, it isn’t difficult to move your existing BBj program files from the NetBeans IDE
to the BDT IDE. And once your programs are in BDT, maintaining them is easy and efficient.
Give the BDT IDE a try and see for yourself!

15

http://www.basis.com/discussion-forums

