
Getting Started with BBJSP
What is BBJSP and How to Use It

by Richard Stollar

You’ve probably heard of JavaServer Pages (JSP), a standard in today’s Java stack for
generating rich content-driven web pages. But did you know that we introduced a new feature
called BBJSP to BBj® 16 which is much like JSP but designed for the BBj® programming
language? This article will take you through the first steps with BBJSP and point you in the right
direction for the configuration and setup process.

This is the first in a series of articles that will look at the BBJSP framework, with each building
on what you have already learned. Through this process we will be building a full create, read,
update and delete (CRUD) application that demonstrates the power behind BBJSP.

Overview
BBJSP closely follows the syntax of JSP. That way any developer with reasonable knowledge of
the latter can quickly move into the former, and your organization can take advantage of a
widely understood framework. Many of the concepts will be familiar to PHP and ASP developers
too.

At its crudest level, BBJSP is a code generator that transforms HTML markup into executable
BBj programs that run on the server-side to render content to the HTML client. The
model-view-controller (MVC) architecture behind BBJSP allows for complete separation of the
business logic from the presentation layer. Following this paradigm, you can divide the project
into distinct areas allowing for more efficient use of developer resources within a wider team of
designers and coders.

1

https://en.wikipedia.org/wiki/JavaServer_Pages
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller


When you begin building your BBJSP application you’ll probably want to add a new Context to
the Jetty server as this will make laying out your pages much easier. If you’re not that familiar
with how contexts work then you may find one of the other articles in this series, Contexts and
BBJSP, helpful. For the remainder of this article, we will assume that you are familiar with the
contexts and have it all working.

With BBJSP you can embrace a wide range of
open-stack technologies which have the best support
for web application developers and open the door to
new possibilities. As you gain experience with BBJSP
you will find that integrating your existing code into a
BBJSP application is a breeze.

Figure 1: Common technologies that you can leverage with BBJSP

Let’s get going then!

Building a CRUD application
We’re going to build a CRUD application that will demonstrate how you can use the different
components of the BBJSP framework to update data.

Our CRUD application needs three main components: a list of records, a form for editing those
records, and the business logic for interacting with the database. These three components fit
together as shown in Figure 2.

Figure 2: An overview diagram of the components of our CRUD application

You’ll notice that the update component has two possible exits. A successful execution will
return the user to the list page component, and any failure will go back to the edit page

2

https://docs.google.com/document/d/1iLAIFu5GQ5mYok9KVj0fE-nisCIQZ8R9q2--puEhLcc/edit?usp=sharing
https://docs.google.com/document/d/1iLAIFu5GQ5mYok9KVj0fE-nisCIQZ8R9q2--puEhLcc/edit?usp=sharing


component. This allows for the update component to validate data before updating the
database.

This article covers the first component in that process, a list page that displays a table of
records from a database. We’ll use the SALESREP table in the ChileCompany database for
records since you probably have that installed. In a follow-up article we’ll look at the steps
involved in creating, updating and deleting records and take you through the full CRUD
application which will add the final components as follows:

● A web page that shows a single record for editing
● A BBj® program that will handle updating the database entries

Presenting a Table of Records
Let’s first create a basic page which has the table with a header row and one empty data row
that we’ll populate with records later. We added some CSS to embellish the table as shown in
Figure 3, but this is not required.

3



Figure 3: The HTML template for our list page with CSS code

Now we need to connect that simple HTML table with the database and populate the rows.

One of the core components of BBJSP are tags which follow similar syntax to regular HTML
tags, in that they have opening and closing elements like this: <tagname> … </tagname>. BBJSP
processes the body of the tag based upon the rules for that tag. For example the core:iterate tag
will repeat everything between the opening <c:iterate> and closing </c:iterate> tags.

Some tags don’t have a body and for these tags you’d use the self-closing syntax like this:
<tagname /> with one such tag being the core:out tag which writes some value to the output
stream.

4



Tags come in libraries and you must import the library before you can use the tag in a page. To
import a tag library you need to specify where the library is and how you will reference it within
the page.

In our example page, we’ll need to use the core tag library, which provides basic functions like
iteration (equivalent to the FOR ... NEXT loop in BBj), and the SQL tag library for reading the
database.

Tag libraries are imported at the top of the page, normally before the opening <html> tag. Let’s
add the import tag to the top of our previous example like this:

Figure 4: An excerpt of the HTML template with import tags added

Now we can reference any tag within the core and SQL tag libraries using the prefix we
specified.

NOTE: The prefix is arbitrary but it’s generally a good idea to settle on a convention that
you will use in all of your pages.

We’ll need to query the database to get a result set which we will use to populate the HTML
table. The SQL tag library provides the functionality for executing this query. As a general
principle, it’s a good idea to keep things together by placing the query tag close to where you
will be writing the data; just before the beginning of the table will be a great place. Figure 5
shows the code snippet that reads the database.

Figure 5: The sql tag responsible for querying the database

NOTE: We used the ‘s’ prefix that we specified in Figure 4 for the SQL library as this tells the
internals of the framework how to find the tag, in this case the query tag, and enables
validation of the attributes.

From the query tag, the datasource and sql attributes will be quite self-explanatory but the
other two attributes are less obvious. The var and template attributes are name-bound
variables (keep reading for more on that one). They tell the BBJSP framework how we will
reference the result set and the template of the result respectively in the rest of the page. The
data bound to result (the value of the var attribute) will contain a BBjVector of records in the

5

http://documentation.basis.com/BASISHelp/WebHelp/bbjsp/api/CoreTags.html
http://documentation.basis.com/BASISHelp/WebHelp/bbjsp/api/SQLTags.html
https://en.wikipedia.org/wiki/Name_binding
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl/bbjvector_bbj.htm


templated format. The template will be in the name-bound variable tpl as specified in the
template attribute.

Next, we need to iterate through the elements in the name-bound variable by using the
iterate tag from the core tag library to fill in the row data from the entries in the result set. For
that, we’ll wrap the table row in an open-close iterate tag as shown in Figure 6.

Figure 6: The HTML table row wrapped in a core iterate tag

That’s still not exactly what we want because all that will produce is several empty rows since
we haven’t filled the table cells with anything. But before we do that, let’s think about the
purpose of the iterate tag. The data attribute tells the tag what data we’ll be processing and the
id attribute says how we want to reference the current element while processing.

In our example, we’re telling the framework to send whatever data has already been bound to
the name result (identified by the ${result} expression) to the data field of the iterate tag.
The iterate tag will process all the elements in the data one-by-one, binding each element to
the name item as it goes through the resultset.

However, the query template bound a string containing the format of the data to the name tpl.
We will need to convert the formatted string into a layout for our page, which we do with the
template tag from the core library. Figure 7 shows how we use it.

6



Figure 7: The template tag that is responsible for formatting each record

This tag will take the data identified by the name-bound variable ${item} and apply the string
template identified by the name-bound variable ${tpl} to produce a data structure which
BBJSP uses to fill each HTML table cell. To make the final presentation of fields in each record
we can now access them as elements in a new name-bound data element theRecord. Figure
8 shows the final code block that will do that:

Figure 8: The completed iterate block used to fill the HTML table

You’ll notice that we can reference each of the fields from the result set by the column name
used in the table. ${theRecord} is actually a HashMap which stores the individual fields,
making it possible to extract the phone number from the record using syntax like
${theRecord['PHONE']}.

Summary
We’ve taken the first steps in creating a CRUD application but there’s still plenty of work left for
us to do. Currently our application will display the contents of the database in an HTML table, as
shown in Figure 9, but this doesn’t go far enough. In an upcoming article we will continue
developing our CRUD application to edit these records.

7

https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html


Figure 9: The HTML browser output from our new application

Check out the example available for download at links.basis.com/16code
For more information on contexts, refer to:

● http://documentation.basis.com/advantage/v18-2014/14jetty.pdf

8

http://links.basis.com/16code
http://documentation.basis.com/advantage/v18-2014/14jetty.pdf

