
BBJSP Command Framework
A Look at the Role of Commands in BBJSP

by Richard Stollar

Hopefully, you have already read the article Getting Started with BBJSP as this article is a
follow-on to that one. If you haven’t read it, we strongly recommend that you do so as we’ll be
continuing to build the create, read, update and delete (CRUD) application we started.

In this article, we’ll be looking at the role of commands in a BBJSP application and the
deployment process. Once you’ve mastered the concepts of the command engine you’ll be well
on the way to full utilization of the BBJSP framework.

Overview
The BBJSP framework includes a page generator and an engine for processing business logic.
Because the presentation layer should not handle the data, logic, and rules, BBJSP provides a
Command Engine specifically for that purpose. Commands are small BBj® programs which
perform some task like updating a database before redirecting to a BBJSP page or, in more
advanced situations, to another command for further logic processing.

Completion of the Read Portion of the CRUD
You should have the first component of our CRUD application completed and, with all things
being equal, you can open the page in your web browser and see all the salespeople listed in
the table. In this article, we’re going to complete the other main components; a form for editing
those records and the business logic for interacting with the database. Figure 1 shows a
diagram of the application components including flow control.

1

https://docs.google.com/document/d/1TNHMjHW8soZpqTCHdFehQftpbfB1CGhjuDKPUnV1jKk/edit#heading=h.gyaijuwt811d
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete


Figure 1: A diagram of the remaining sections of our CRUD application

Before we start writing our edit page, we need a way to link it to the list.bbjsp page. This
way, the user can click on a salesperson in the listing page to bring up the edit page. We can do
this in a few different ways:

1. We could add an edit button to the table
2. We could put a hyperlink on the salesperson list entries
3. We could write some clever JavaScript to spot a double-click event on a table row

We’re going to use the second option and add a pair of hyperlinks: one for Edit which we’ll add
to the existing salesperson Code column, and one for Delete which we’ll add in the last table
column. Figure 2 shows the updated table row source in the list.bbjsp file with the addition
of our two new hyperlinks.

Figure 2: The updated list.bbjsp excerpt with edit and delete hyperlinks

2



Now when we view the list in our browser, each salesperson entry will have a link placed on the
Code field and a new delete link in the last column. Figure 3 shows our updated listing page
with the new hyperlinks.

Figure 3: The resulting list of salespeople with Edit and Delete hyperlinks

To complete the list page, we also need to give the user a way to add a new record. We can do
this by placing one more link after the table, like this:

The Edit Page
The edit page allows the user to add a new salesperson or edit an existing one from the listing
page. We need an HTML form that displays the fields from the database table and populates the
initial values for an update. Figure 4 shows the source for our completed edit page.

3

https://www.w3schools.com/tags/tag_form.asp


Figure 4: The edit.bbjsp page which allows the user to add or edit a salesperson

4



Now when you click on the first salesperson entry on the list page, the edit page displays as
shown in Figure 5. When the user clicks the [SAVE] button, the form will POST to a BBJSP
Command which updates the database. The form’s action specifies where to send the data
upon submission, and in this case, it is set to chileupdater.cmd. Building this update
command will be our next step.

Figure 5: The edit page displaying the first salesperson entry

The Quintessential Command in BBJSP
The basic idea of a command is to execute some business logic, such as updating a database
entry, then tell the framework what to do next. In our CRUD application, the command will be
responsible for updating the database based upon the fields POSTed from the form on the edit
page. Depending on whether the update succeeds, the command will tell the framework to
either return to the listing page or to stay on the editing page to resolve the error.

When coding BBJSP commands, you must follow an Object-Oriented Programming (OOP)
design approach and use BBj Custom Objects because all commands must implement the
BBjspCommand interface. This interface mandates that you have an
execute(commandContext!) method which the framework calls. The method should process
the request and make the determination about how the framework will continue beyond the
execution of the command. Let’s look at the most simple command code before building our
CRUD command.

5

http://documentation.basis.com/BASISHelp/WebHelp/bbjsp/api/CommandEngine.html
http://documentation.basis.com/BASISHelp/WebHelp/bbjsp/api/CommandEngine.html
https://en.wikipedia.org/wiki/Object-oriented_programming
http://documentation.basis.com/docs/BBjCustomObjects.pdf
http://documentation.basis.com/BASISHelp/WebHelp/bbjsp/api/BBjspCommand.html


Figure 6: A custom execute command which implements the BBjspCommand interface

Looking at the command example in Figure 6, you can see that BBjspCommand receives a
BBjspCommandContext in the execute method. Calling getResult() on the context returns a
BBjspCommandResult. Lastly, the code sets the command’s result forward option and returns
the result object.

The purpose of the forward option is to tell the framework how to proceed after the execute
method completes. When you configure a command in EM, which we’ll get to soon, you need to
tell BBJSP about the possible exit points. The diagram in Figure 7 shows both named exit
points; list.bbjsp and edit.bbjsp, for the update command. We call each named exit point a
forward and it points to new URL. Therefore, your command specifies the named exit point, or
forward, for the framework to follow.

Figure 7: Command exit points, also known as forwards

6

http://documentation.basis.com/BASISHelp/WebHelp/bbjsp/api/BBjspCommand.html
http://documentation.basis.com/BASISHelp/WebHelp/bbjsp/api/BBjspCommandContext.html
http://documentation.basis.com/BASISHelp/WebHelp/bbjsp/api/BBjspCommandResult.html


The CRUD Command
Our CRUD application is fairly simple and only needs one command program to handle all
updates because the HTTP request data includes the type of update. Figure 8 shows the final
command code that we’re going to use:

7



Figure 8: The Commands.bbj program code for the CRUD application

8



This server-side code extracts the required data from the request, updates the database, and
sets the forward. We now need to save and deploy this command.

Saving the Command Program File
BBJSP commands are BBj program files and, like all BBj programs, they should be locatable
within the runtime PREFIX. When you first created your CRUD context you specified a
config.bbx file. That file should contain a PREFIX line which includes locations for your BBJSP
program files, including this Commands.bbj file. You should NOT put your BBJSP program
source files in the same folder as you put your BBJSP pages because they would be viewable
by the client in the browser.

Deploying the Command
Now that the command program exists on disk, we need to configure the command for the
CRUD application in Enterprise Manager. Open EM then go to the Web > Context Configuration
entry. Select your Chile context and you’ll see an expandable section called BBJSP Commands.
Expanding that section reveals a list of all defined commands. To add our first command, click
on the plus icon next to the command table, as shown in Figure 9.

Figure 9: The BJSP Commands list in Enterprise Manager

Figure 10: shows the fully-defined command configuration:

9



Figure 10: The completed Command Configuration dialog in Enterprise Manager

Because we did not include a path to the source file, the Commands.bbj file should be locatable
via the context’s prefix. Alternatively, you can specify the /full/path/to/Commands.bbj file in
the Command Configuration. For each BBJSP application, EM saves the defined command
configurations in the WEB-CFG/command-engine.xml configuration file, which you can edit
directly if desired. Figure 11 shows an excerpt of the resultant command-engine.xml file.

Figure 11. The command configuration entry in command-engine.xml

10



There’s quite a bit going on in there but actually, it’s straightforward. The first set of fields tells
the BBJSP framework everything about the program to execute: the URL or path for the
command, the program’s source file, and the name of the class that we’ll use.

Below that, the table shows the redirects with their name, destination URL path, and their
redirect flag. A redirect causes the server to send the HTTP response status code 302 with a
location containing a new URL to the client’s browser. When the browser receives the status, it
makes a new HTTP request to the redirect URL. Setting the redirect flag is important because it
defines what the user sees after the command has finished.

For this example, regardless of how we set command’s redirect value, the user will see the
updated salesperson listing after saving their edits. But if we set the redirect to false then the
user will see /chileupdater.cmd in their browser's URL toolbar. That is not normally desirable
so we’ll set it to true. This way the user will see /chile/index.bbjsp in their URL toolbar
which is what we want in most cases.

All that’s left to do is to save our configuration and restart BBjServices to finalize our changes.

Running the Application
When we open our BBJSP application in the browser, we’re presented with the list of
salespersons, as shown in Figure 12.

Figure 12: The listing page showing the link to add a new salesperson

Clicking on a salesperson link loads the edit page, shown in Figure 13, allowing us to change
the record in the database.

11



Figure 13: Updating a salesperson in the editing page

After modifying the data, we submit the form via the [Save] button and our code updates the
record in the underlying database. We are then returned to the list page which reflects our
changes to the data.

Summary
As you have read, updating records in a table can be quite simple when broken down into
distinct units. We have all the key components of the model-view-controller (MVC) architecture
in place and we can easily change one of the components, like the View component, without the
need to recode the Controller. In our next article, AJAXing the CRUD, watch in wonder as we
turn this little application into an AJAX-enabled single-page web application with Javascript and
all the bells and whistles!

Check out the example available for download at links.basis.com/16code

12

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Ajax_(programming)
http://links.basis.com/16code

