
Guide to GUI Programming in BBj

The purpose of this guide is to introduce programmers to GUI programming in BBj®, the current
generation of BBx®.

Guide to GUI Programming in BBj
Introduction
Historical Background
Graphical User Interfaces
Terminology
Interactive Devices

The TermConsole Device
The SysConsole/SysWindow Device
The WinConsole Device
The SYSGUI Device

Using the SYSGUI Device
Querying the SYSGUI Device

Event Driven Programming
Visual PRO/5 Event Loop Model
BBjSysGui Object
BBj Callback Model
BBj Custom Object Event Model
Sample Programs

Character-Oriented Procedural Programming (cust-cui.txt)
Visual PRO/5 GUI Using Mnemonics (cust-gui.txt)
Visual PRO/5 GUI Using a Resource File (cust-gui.src)
BBj GUI Using Callbacks (cust-bbj.txt)
BBj GUI Using Callbacks and Resource File (cust-bbj.src)
BBj GUI Using Objects (cust-obj.txt)
BBj GUI Using Objects and Resource File (cust-obj.src)
AppBuilder Project (cust.gbf)
Creating the Customer Form in Barista

Build from Scratch
Import to Barista Dictionary
Plumb into Barista

More Information
Sample Programs

March 2022
BASIS International, Ltd. Page 1 of 47

Guide to GUI Programming in BBj

Introduction
Back to top

Since its introduction in 1985, BBx® has evolved through the addition of new features while
maintaining support for legacy features. Because of this evolutionary approach, much of BBj® is
familiar to BBx programmers who have prior experience with PRO/5® for UNIX or Visual
PRO/5® for Microsoft Windows. Programmers with Java experience and other GUI development
languages will appreciate the newest object-oriented syntax and concepts.

Historical Background
Back to top

BBj is the most recent evolution of the Business BASIC programming language, originally
developed for minicomputer systems in the early 1970s. Business BASIC has traditionally
provided powerful and easy-to-use I/O verbs and functions, as well as sophisticated file
structures to support complex application data designs.

In the 1980s, Business BASIC developers ported their software to PC-based systems. Starting
in 1985, the BBx (Business BASIC Extended) programming language became one of the
premier implementations in the world. It offered full portability of source code and data across
many PC and minicomputer platforms.

With the release of Visual PRO/5 for the Microsoft Windows platform in the 1990s, BBx added a
complete set of graphical commands and tools for developing GUI applications. At the same
time, it continued to provide compatibility with legacy applications. Programs written in all
previous versions of BBx continued to run in Visual PRO/5 with no modification or conversion of
programs or data.

Towards the end of the 1990s, GUI programming gained widespread usage on platforms other
than Microsoft Windows. Web-based applications were becoming commonplace, and GUI
environments on Linux and Apple's Macintosh platform were becoming increasingly significant.
To address these new requirements, BASIS ported the BBx language to Java and released this
new evolution of the BBx language as BBj. With a few very limited exceptions, programs written
in previous versions of the BBx language continue to run in BBj. More significantly, BBj
programs – including GUI programs – run unchanged on all supported platforms, including
Microsoft Windows, Linux, and Macintosh OS X.

The enhanced and re-engineered BBj Structured Query Language (SQL) engine continues to
provide access to the BASIS DBMS and third party SQL compliant databases. BBj’s direct
access to native BASIS DBMS file formats remain unchanged from earlier versions of BBx,
while BBj supports new file formats such as the Journaled File type in the BASIS DBMS. No

Page 2 of 47

data modification or conversion is required for BBj to access legacy filesystems. To learn more
about mixed mode deployments of BBj and the PRO/5 family and their associated databases,
refer to the Technical Resource Zone feature "Lock, Lock, Who's Got The Lock," in the online
BASIS International Advantage magazine.

Graphical User Interfaces
Back to top

The graphical user interface differs from the traditional character-based interface in two
significant ways: It accepts input from a pointing device, usually a mouse, and it allows the user
to generate a sequence of events that the programmer cannot predict.

The graphical environment is sufficiently complex to require a runtime driver quite different from
the character-based screen drivers used by traditional applications. In order to use the graphical
environment, an entirely new set of commands is necessary to accommodate the needs of the
programmer.

BBj supports the character-oriented TermConsole device, carried forward from UNIX versions of
PRO/5, as well as the character-oriented SysWindow device and the GUI-oriented SYSGUI
device, both carried forward from Visual PRO/5 for Windows.

Terminology
Back to top

Term Definition
Context In BBj, a developer creates each graphical window with its own context, which is

simply an integer; and references all objects and events associated with a
window using its context.

Control A control is an object that the developer uses as part of a graphical interface.
Some typical controls include push buttons, text boxes, list buttons, and radio
buttons.

Dialog A dialog is a special window that requires a response from the user. In most
languages, the developer creates dialogs and graphical windows through a
discrete syntax. BBj offers a simple, uniform syntax for creating dialogs and
windows. In BBj, one simply creates dialogs by assigning dialog attributes to
windows.

Event An event is the report of a graphical object or device that the user operates or
manipulates such as by clicking a mouse button, choosing a menu item, or
pressing a key on the keyboard.

GUI GUI is an acronym for Graphical User Interface.
Mnemonic A mnemonic is an abbreviated reference intended to trigger memory to some

command or concept. This term was adapted into traditional Business BASIC
languages for some classes of I/O commands. BBj extends the mnemonic
classes to include the creation and management of graphical objects.

Object An object consists of data and specific rules that control operations performed on
that data.

Page 3 of 47

http://www.basis.com/advantage/mag-v9n2/trz.html

SYSGUI The SYSGUI device, defined in the configuration file, provides a method of
communicating with the graphic-based screen interface provided with BBj.

SysWindow The SysWindow is a device defined in the configuration that represents the
character-based screen interface provided by BBj. It represents an extension to
the traditional BBx terminal device.

Window A window is a logical screen used for many purposes. Graphical windows created
via the SYSGUI device differ from the character-based windows created with the
SysWindow device. Both devices, however, use windows.

Interactive Devices
Back to top

BBj builds on features introduced in earlier versions of the BBx language, including PRO/5 for
UNIX and Visual PRO/5 for Windows. It implements several different input devices.
● TermConsole
● SysConsole/SysWindow
● WinConsole
● SYSGUI

The TermConsole Device
Back to top

The TermConsole is a character-based user interface available for dumb terminals or terminal
emulators. As in PRO/5, it relies on termcap. A "console" interface gives users the ability to type
commands at a ready prompt, edit and list BBj program source code, and display the output of
character-based programs.

The SysConsole/SysWindow Device
Back to top

The SysWindow is a character-oriented display device with some graphical capabilities. In
addition to the traditional character interface implemented by the TermConsole, the SysWindow
adds optional mouse-sensitive areas, a MSGBOX() dialog, and standard "file open" and "file
save" dialogs. Traditional character-based applications can run in this environment without
modification, thus facilitating the gradual replacement of CUI programs with programs written to
take advantage of the graphical environment.

The WinConsole Device
Back to top

The WinConsole is a debugging environment for developers. It enables the developer to set
breakpoints, dynamically watch variables, and view multiple levels of running programs in a
tabbed display.

Page 4 of 47

The SYSGUI Device
Back to top

The SYSGUI device provides an environment that accepts a full range of graphical commands
for the creation of full-featured graphical applications. The SYSGUI device supports several
kinds of windows and GUI controls, along with extensive drawing and plotting commands.

The SYSGUI device requires a special alias line in the config.bbx file. The installation process
automatically creates this alias line:

ALIAS X0 SYSGUI

To use the SYSGUI device, one just opens a channel to X0 and starts interacting with it. For
example, the following code fragment will open X0, retrieve a resource from a resource file, and
display it:

0010 OPEN (1)"X0"
0020 LET H=RESOPEN("cust.arc")
0030 LET R$=RESGET(H,1,101)
0040 PRINT (1)'RESOURCE'(LEN(R$)),R$
0050 ESCAPE

Commands sent to the SYSGUI device driver are essentially print mnemonics. Traditional
Business BASIC programmers will find this command format familiar and similar in concept to
the mnemonics they use in character-based environments such as 'CS' (clear screen) and 'SB'
(start background or dim mode). Even programmers new to BBj and its predecessor languages
will find it easy to use mnemonics.

Most SYSGUI mnemonics are procedure calls with lists of parameters. BBj employs concepts
similar to other graphical languages. It inherits from traditional Business BASICs the compact
and powerful I/O verbs, which have made rapid application development a reality. Since
Business BASIC programmers are accustomed to using I/O verbs and functions that do not
require extensive supporting code, BASIS has extended this ease of use and simplicity
wherever possible to the SYSGUI device.

In particular, the distinctions between windows and dialogs, as known in other languages, blur to
the point where developers can design BBj windows to exploit some of the best of both windows
and dialogs simultaneously. This simplified approach reduces the set of commands required to
support full-featured applications.

Because applications frequently need to work with several windows at a time, BBj uses the
concept of contexts to differentiate between windows. Each window has its own context; each
event returned from the SYSGUI device has a context ID. Setting the context is not necessary if
only one graphical window is needed at a time. However, if you want to display one window,
then display another window, and manipulate them simultaneously, the programs must be
context aware.

Page 5 of 47

Valid context IDs are integers from 0 to 32767. When the SYSGUI device is first opened, the
context is automatically assigned an ID of 0. If it is not changed, the first window created is
associated with context 0. To create another window, specify a new context by using the
‘CONTEXT’ mnemonic with an unused ID. The next window created is associated with the most
recent 'CONTEXT' value.

Although there can be many contexts, only one context is considered to be the current context.
Many commands operate on the current context while others specify the context ID as a
parameter. To switch contexts, issue the 'CONTEXT' mnemonic with the desired context ID.

It is possible to query the SYSGUI device for an unused context ID to avoid runtime errors or
logic problems. Developers should write programs as "add-on" modules so other applications
can make use of this feature. To query the SYSGUI device, use the FIN() and CTRL() functions.

Using the SYSGUI Device
Back to top

The purpose of the SYSGUI device is to facilitate the creation and manipulation of custom
graphical windows from a BBj program. To use the SYSGUI device, add an alias line like the
following to config.bbx:

ALIAS X0 SYSGUI

Any alias starting with X can be used, but there is no advantage to using anything other than X0,
which BBj provides by default upon installation. Note that the installation process should add this
line to the config.bbx file.

Open X0 and start interacting with it. Create and destroy multiple windows, controls, etc.,
without closing or reopening X0.

Querying the SYSGUI Device
Back to top

At any time, the CTRL() function can be used to get information about the current state of the
SYSGUI device, including current context, contents of controls, and the like.

FIN(chan) also returns useful information including current context, number of active contexts,
and first available context. Get the TMPL(chan,IND=0) to see the template. For more
information, see FIN() function.

Event Driven Programming
Back to top

A graphical interface typically offers a variety of controls that the user may operate at random
using the keyboard and/or the pointing device. Any of these user choices can potentially

Page 6 of 47

generate events, some of which require the application to deliver an appropriate response. Since
the user can initiate an event from any active control on the screen, the software is said to be
event driven.

Character-based applications have used event-driven methods for some time. Applications that
incorporate pre-assigned function keys or menu-driven interfaces are good examples.

Visual PRO/5 Event Loop Model
Back to top

Visual PRO/5 and BBj implement GUI programming using an event loop. The SYSGUI device
reports all events through a single event queue. BBj returns each event as a fixed-length string
in a standard format. To minimize the risk of generating preventable runtime errors, BASIS
recommends using string templates to retrieve event data. This ensures that the application
program will always have a correct reference to the control that passed the most recently
received event. A template for the event structure is available with the TMPL(channel) function
for retrieving template data on open channels. For example:

SYSGUI=unt
OPEN (SYSGUI)"X0"
PRINT (SYSGUI)'WINDOW'(100,100,100,100,"Window",00010003)
PRINT (SYSGUI)'BUTTON'(1,10,30,80,30,"OK",$$)
DIM EVENT$:TMPL(SYSGUI)
REPEAT
READ RECORD (SYSGUI,SIZ=LEN(EVENT$))EVENT$
IF EVENT.CODE$="B" AND EVENT.ID=1 THEN GOSUB OK
UNTIL EVENT.CODE$="X"
STOP
OK:
I=MSGBOX("User clicked the OK button")
RETURN

The format for an event returned by TMPL(sysgui) is:

Template Field Meaning
context Event Context ID
code Code for the type of event
id ID of the control sending the event
flags Flags – interpretation varies with type of control
x X location or dimension
y Y location or dimension

Each newly created BBj window is in a context that serves as the frame of reference for objects
and events associated with that window. When taken with the context field, the id field uniquely
identifies the control that is associated with the event.

Page 7 of 47

A program recognizes events by the values of the code field in the event messages. However,
this is often insufficient information to determine the application’s response. Additional
information about an event is passed in the flags and x and y parameters.
The following table contains a list of the events that can be passed and the corresponding event
mask flag bits:

Event Description Code Eventmask

Push button operated B 00000000

Tool button operated b 00000000

Menu selection made C 00000000

Notify (extended events on various controls) N 00000000

Popup menu item selected P 00000000

Close box operated X 00000000

Popup requested event r 00000001

Window focus change F 00000004

Window resized S 00000008

Mouse wheel scroll w 00000020

Mouse button down d 00000040

Mouse button up u 00000080

Mouse moved m 00000100

Mouse button double click 2 00000200

Keypress t 00000400

Scroll bar or slider position changed p 00100000

Edit control modified e 00400000

Control focus gained or lost f 00800000

Click or double click on list item l 01000000

Check or uncheck of check box or radio button c 02000000

Mouse enter/exit E 10000000

Right mouse button down R 20000000

Page 8 of 47

Activate or deactivate application or window A 40000000

System color change s 80000000

BBj always reports several common events. It is the developer’s responsibility to specify in the
event masks which additional optional events to report. For example, if the window will contain
radio buttons to which the program must respond, then the event mask should enable the
reporting of radio button selection.

BBj allows the programmer to disable/enable the windows/dialogs for each application or to
evaluate the reported events by context. Each application can itself contain several window
and/or dialogs. For ease of programming, BBj reports all events from all windows through a
single queue.

It is the developer’s responsibility to scan the event queue, identify the reported events, and
initiate the appropriate responses. Typically, developers use a looping structure such as
SWITCH to scan the SYSGUI device for events, and then use a selection structure to determine
what the events were and what responses are appropriate from the application.

BBjSysGui Object
Back to top

BBj provides an object-oriented interface for interacting with various BBj system objects,
including the SYSGUI device. This object-oriented interface provides much of the same
functionality as the original Visual PRO/5 mnemonics and functions, but in a more intuitive
syntax, as shown in the following example:

Mnemonic syntax Object-oriented syntax
GUI=UNT
OPEN (GUI)"X0"

PRINT(GUI)'WINDOW'(99,99,100,100,"",00010003)
PRINT(GUI)'BUTTON'(1,10,30,80,30,"OK",$$)
DIM INFO$:"X:I(2),Y:I(2),W:U(2),H:U(2)"
LET INFO$=CTRL(GUI,1,0)
PRINT "Button size is",INFO.W,INFO.H

GUI=UNT
OPEN (GUI)"X0"
GUI!=BBJAPI().getSysGui()
WINDOW!=GUI!.addWindow(99,99,100,100," ")
BUTTON!=WINDOW!.addButton(1,10,30,80,30,"OK")
LET W=BUTTON!.getWidth()
LET H=BUTTON!.getHeight()
PRINT "Button size is",W,H

BBj Callback Model
Back to top

In addition to supporting the Visual PRO/5 event loop paradigm, BBj also implements an object-
oriented event model based on callbacks. In this model, the developer registers callbacks
(basically, subroutines) to invoke when detecting a particular event. Events only fire for
registered callbacks, reducing communications overhead. This is an important consideration
over slower client/server connections.

SYSGUI=UNT

Page 9 of 47

OPEN (SYSGUI)"X0"
SYSGUI!=bbjapi().getSysGui()
WINDOW!=SYSGUI!.addWindow(100,100,100,100,"Window")
OK!=WINDOW!.addButton(1,10,30,80,30,"OK")
WINDOW!.setCallback(WINDOW!.ON_CLOSE,"EOJ")
OK!.setCallback(BUTTON!.ON_BUTTON_PUSH,"OK")
PROCESS_EVENTS; REM ' Event Loop
EOJ:
STOP
OK:
I=MSGBOX("User clicked the OK button")
RETURN

BBj Custom Object Event Model
Back to top

BBj 6.0 introduced user-defined custom objects and event objects. These new features enable
the developer to write completely object-oriented programs in BBj. The following sample shows
a simple window and push button implemented as a custom object:

sysgui = unt
open (sysgui)"X0"

declare Sample Sample!
Sample! = new Sample()
Sample!.go()
release

class public Sample

field private BBjSysGui sysgui!
field private BBjTopLevelWindow Window!
field private BBjButton OK!

method public Sample()
#sysgui! = bbjapi().getSysGui()
methodend

method public void initControls()
#Window! = #sysgui!.addWindow(100,100,100,100,"Window")
#OK! = #Window!.addButton(1,10,30,80,30,"OK")
methodend

method public void initEvents()
#OK!.setCallback(#OK!.ON_BUTTON_PUSH,#this!,"doOK")
methodend

method public void go()
#initControls()
#initEvents()
#Window!.setCallback(#Window!.ON_CLOSE,"eoj")

Page 10 of 47

process_events

eoj:
#Window!.destroy()
methodend

method public void doOK(BBjButtonPushEvent event!) i =
msgbox("User clicked OK")
methodend

classend

At first glance, this sample does not appear to be an improvement over the previous version; it
requires more than twice as many lines of code. In practice, this syntax offers two benefits:

● The code can be easier to understand, especially for programmers who are more
comfortable with modern object-oriented syntax.

● BBj custom object methods implement variable scoping. This eliminates many hard-to-
isolate bugs involving variable conflicts, particularly in very large programs.

Refer to A Primer for Using BBj Custom Objects for an introduction to BBj custom objects.

Page 11 of 47

http://www.basis.com/advantage/mag-v10n1/primer.html

Sample Programs
Back to top

Each of the following samples implements a small customer master file maintenance program.
The description of these programs covers the key points of each program and how it differs from
the previous version. The sample programs are available for download to facilitate
experimentation.

Program Comments
cust-cui.txt This traditional character-oriented program can run in all versions of PRO/5,

Visual PRO/5, and BBj.
cust-gui.txt This GUI program can run in all versions of Visual PRO/5 and BBj. It creates

windows and controls using procedural code, and it processes events using
an event loop.

cust-gui.src* This program is equivalent to cust-gui.txt, but it creates windows and
controls using a resource file named cust.arc.

cust-bbj.txt This GUI program can run in all versions of BBj (not Visual PRO/5). It
creates windows and controls using procedural code, and it processes
events using callbacks to subroutines.

cust-bbj.src* This program is equivalent to cust-bbj.txt, but it creates windows and
controls using a resource file named cust.arc.

cust-obj.txt This GUI program, organized as a BBj custom object, can run in BBj
versions 6.0 and above. It creates windows and controls using procedural
code, and it processes events using callbacks to object-oriented methods.

cust-obj.src* This program is equivalent to cust-obj.txt, but it creates windows and
controls using a resource file named cust.arc.

cust.gbf/src* This AppBuilder project file (cust.gbf) and resulting program (cust.src)
implement the same functionality as cust-gui.src.

* These GUI programs use the cust.arc resource file.

Page 12 of 47

https://documentation.basis.com/advantage/code/GuideToGuiProgramming-SamplePrograms.zip

Character-Oriented Procedural Programming (cust-cui.txt)
Back to top

The following program implements a sample customer master file maintenance as a traditional
character-oriented procedural program. This program will run in all versions of BBx from
BBxProgression/3 through PRO/5, Visual PRO/5, and BBj. The developer controls the user's
path through a procedural program. In this program, the user is prompted for a customer ID,
customer name, phone number, and then for a selected action (update, delete, exit, etc). In a
procedural program, it locks the user into the path chosen by the developer. For example, users
cannot jump directly from the customer ID field to the phone number field; they must step
through the customer name field first.

rem ' Customer master file maintenance (Character user interface)

dim customer$:"id:c(6),name:c(32),phone:c(24)"
filename$ = "customer.dat"
customer = unt
open (customer,err=makefile)filename$
goto init

makefile:
mkeyed filename$,[0:1:6],0,64
open (customer)filename$

while 1
dread customer.id$,customer.name$,customer.phone$,err=eof
write record(customer)customer$
continue

eof:
break

wend

data "BASIS","BASIS International Ltd.","+1.505.345.5232"
data "CHILE","Chile Company","+1.555.555.1212"

init:
print 'window'(10,10,55,9,"Customers")
print 'sb',
print @(6,1),"ID:"
print @(4,2),"Name:"
print @(3,3),"Phone:"
print 'cf',

id$="BASIS"
gosub fetch

while 1
id:

Page 13 of 47

print @(0,5),'cl',"Enter ID, F4 = End"
input @(10,1),'uc',id$,'lc'
if ctl=2 or ctl=3 then goto id
if ctl=4 then break
if id$="" then id$=customer.id$
gosub fetch

name:
print @(0,5),'cl',"Enter Name, F3 = Back, F4 = End"
input @(10,2),name$
if ctl=2 then goto name
if ctl=3 or ctl=4 then goto id
if len(cvs(name$,3)) then customer.name$ = name$
print @(10,2),name$

phone:
print @(0,5),'cl',"Enter Phone, F3 = Back, F4 = End"
input@(10,3),phone$
if ctl=2 then goto phone
if ctl=3 then goto name
if ctl=4 then goto id
if len(cvs(phone$,3)) then customer.phone$ = phone$
print @(10,3),phone$

action:
input @(0,5),'cl',"F1 = Update, F2 = Delete, F3 = Back, F4 = End: ",*
if ctl<2 then gosub update; continue
if ctl=2 then gosub remove; continue
if ctl=3 then goto phone
if ctl=4 then break

wend

release

clear:
dim customer$:fattr(customer$)
gosub display
return

fetch:
id$ = pad(cvs(id$,7),6)
dim customer$:fattr(customer$)
let customer.id$ = id$
read record(customer,key=customer.id$,dom=notfound)customer$
notfound:
gosub display return

display:
print 'cf',
print @(10,1),cvs(customer.id$,3)
print @(10,2),cvs(customer.name$,3)
print @(10,3),cvs(customer.phone$,3)
return

update:
write record (customer)customer$
i = msgbox("Customer "+customer.id$+" updated.",0,"Updated")
gosub clear

Page 14 of 47

return

remove:
remove (customer,key=customer.id$,dom=nodelete)
i = msgbox("Customer "+customer.id$+" deleted.",0,"Deleted")
nodelete:
gosub clear
return

This is how the program looks on a BBj SysConsole:

Page 15 of 47

Visual PRO/5 GUI Using Mnemonics (cust-gui.txt)
Back to top

This program implements a customer master file maintenance as a Visual PRO/5 event-driven
GUI program. This program will run in Visual PRO/5 and all versions of BBj. From the user's
perspective, the key difference between this event-driven GUI program and the previous
character-oriented program is that the user determines the flow of control through the program.
The program creates a window, puts some controls on it, and waits for the user. The user is free
to click or type in any control on the window; the program must be prepared to respond to the
user's choices.

This is how the GUI form for all of the following sample programs looks under Windows 7:

rem ' Customer master file maintenance (Visual PRO/5 GUI user interface)

dim customer$:"id:c(6),name:c(32),phone:c(24)"
filename$ = "customer.dat"
customer = unt
open (customer,err=makefile)filename$
goto init

makefile:
mkeyed filename$,[0:1:6],0,64
open (customer)filename$
while 1

dread customer.id$,customer.name$,customer.phone$,err=eof
write record(customer)customer$
continue

eof:
break

wend

data "BASIS","BASIS International Ltd.","+1.505.345.5232"
data "CHILE","Chile Company","+1.555.555.1212"

init:
sysgui = unt
open (sysgui)"X0"; rem ' ALIAS X0 SYSGUI

Page 16 of 47

print (sysgui)'window'(100,100,280,170,"Customers",00010003,$00c00000$)
print (sysgui)'text'(101,10,10,80,30,"ID:",8000)
print (sysgui)'edit'(102,100,10,70,30,$$,$$)
print (sysgui)'text'(103,10,50,80,30,"Name:",8000)
print (sysgui)'edit'(104,100,50,170,30,$$,$$)
print (sysgui)'text'(105,10,90,80,30,"Phone:",8000)
print (sysgui)'edit'(106,100,90,170,30,$$,$$)
print (sysgui)'button'(201,10,130,80,30,"Update",$$)
print (sysgui)'button'(202,100,130,80,30,"Delete",$$)
print (sysgui)'button'(203,190,130,80,30,"Clear",$$)

print (sysgui)'title'(102,"BASIS"),'focus'(102)
gosub fetch

dim event$:tmpl(sysgui)
repeat

read record (sysgui,siz=10)event$
if event.code$ = "e" and event.id = 102 then gosub toggle
if event.code$ = "f" and event.id = 102 and event.flags = 0 gosub fetch
if event.code$ = "B" and event.id = 201 then gosub update
if event.code$ = "B" and event.id = 202 then gosub remove
if event.code$ = "B" and event.id = 203 then gosub clear

until event.code$="X"

release

toggle:
id$ = cvs(ctrl(sysgui,102,1),7)
if len(id$)then print (sysgui)'enable'(201,202)
: else print (sysgui)'disable'(201,202)
return

fetch:
id$ = pad(cvs(ctrl(sysgui,102,1),7),6)
if customer.id$ = id$ then return
dim customer$:fattr(customer$)
let customer.id$ = id$
read record(customer,key=customer.id$,dom=notfound)customer$
notfound:
gosub display
return

update:
customer.id$ = ctrl(sysgui,102,1)
customer.name$ = ctrl(sysgui,104,1)
customer.phone$ = ctrl(sysgui,106,1)
write record (customer)customer$
i = msgbox("Customer "+customer.id$+" updated.",0,"Updated")
gosub clear
return

remove:
remove (customer,key=customer.id$,dom=nodelete)
i = msgbox("Customer "+customer.id$+" deleted.",0,"Deleted")
nodelete:

Page 17 of 47

gosub clear
return

clear:
dim customer$:fattr(customer$)
gosub display
print (sysgui)'focus'(102)
return

display:
print (sysgui)'title'(102,cvs(customer.id$,3))
print (sysgui)'title'(104,cvs(customer.name$,3))
print (sysgui)'title'(106,cvs(customer.phone$,3))
return

This is how the GUI form looks under Windows 7:

Page 18 of 47

Visual PRO/5 GUI Using a Resource File (cust-gui.src)
Back to top

The previous program embedded commands to create the window and controls directly in the
program. The following program is identical to the previous one, except that this version defines
the window and controls in an external resource file. A resource file has many advantages:

● The same window can be used from many different programs with no duplication of code
● Multiple resource files can be defined for different languages, all affecting the program
● It enables you to make minor aesthetic changes to a program display without changing

the program

rem ' Customer master file maintenance (Visual PRO/5 GUI user interface)

dim customer$:"id:c(6),name:c(32),phone:c(24)"
filename$ = "customer.dat"
customer = unt
open (customer,err=makefile)filename$
goto init

makefile:
mkeyed filename$,[0:1:6],0,64
open (customer)filename$
while 1

dread customer.id$,customer.name$,customer.phone$,err=eof
write record(customer)customer$
continue

eof:
break

wend

data "BASIS","BASIS International Ltd.","+1.505.345.5232"
data "CHILE","Chile Company","+1.555.555.1212"

init:
sysgui = unt
open (sysgui)"X0"; rem ' ALIAS X0 SYSGUI

if pos(" 5 "=sys) then cust = resopen("cust.brc")
if pos(" 6 "=sys) then cust = resopen("cust.arc")
cust$ = resget(cust,1,101)
print (sysgui)'resource'(len(cust$)),cust$
resclose (cust)

print (sysgui)'title'(102,"BASIS"),'focus'(102)
gosub fetch

dim event$:tmpl(sysgui)
repeat

read record (sysgui,siz=10)event$
if event.code$ = "e" and event.id = 102 then gosub toggle

Page 19 of 47

if event.code$ = "f" and event.id = 102 and event.flags = 0 gosub fetch
if event.code$ = "B" and event.id = 201 then gosub update
if event.code$ = "B" and event.id = 202 then gosub remove
if event.code$ = "B" and event.id = 203 then gosub clear

until event.code$="X"

release

toggle:
id$ = cvs(ctrl(sysgui,102,1),7)
if len(id$) then print (sysgui)'enable'(201,202)
: else print (sysgui)'disable'(201,202)
return

fetch:
id$ = pad(cvs(ctrl(sysgui,102,1),7),6)
if customer.id$ = id$ then return
dim customer$:fattr(customer$)
let customer.id$ = id$
read record(customer,key=customer.id$,dom=notfound)customer$
notfound:
gosub display
return

update:
customer.id$ = ctrl(sysgui,102,1)
customer.name$ = ctrl(sysgui,104,1)
customer.phone$ = ctrl(sysgui,106,1)
write record (customer)customer$
i = msgbox("Customer "+customer.id$+" updated.",0,"Updated")
gosub clear
return

remove:
remove (customer,key=customer.id$,dom=nodelete)
i = msgbox("Customer "+customer.id$+" deleted.",0,"Deleted")
nodelete:
gosub clear
return

clear:
dim customer$:fattr(customer$)
gosub display
print (sysgui)'focus'(102)
return

display:
print (sysgui)'title'(102,cvs(customer.id$,3))
print (sysgui)'title'(104,cvs(customer.name$,3))
print (sysgui)'title'(106,cvs(customer.phone$,3))
return

Page 20 of 47

This is the cust.arc resource file:

VERSION "4.0"

WINDOW 101 "Customers" 100 100 280 170
BEGIN
KEYBOARDNAVIGATION
EVENTMASK 12582912
NAME "Customer"

STATICTEXT 101, "ID:", 10, 10, 80, 30
BEGIN
JUSTIFICATION 32768
NAME "ID Label"
END

EDIT 102, "", 100, 10, 70, 30 BEGIN
NAME "ID"
CLIENTEDGE
END

STATICTEXT 103, "Name:", 10, 50, 80, 30
BEGIN
JUSTIFICATION 32768
NAME "Name Label"
END

EDIT 104, "", 100, 50, 170, 30
BEGIN
NAME "Name"
CLIENTEDGE
END

STATICTEXT 105, "Phone:", 10, 90, 80, 30
BEGIN
JUSTIFICATION 32768
NAME "Phone Label"
END

EDIT 106, "", 100, 90, 170, 30
BEGIN
NAME "Phone"
CLIENTEDGE
END

BUTTON 201, "Update", 10, 130, 80, 30
BEGIN
NAME "Update"
END

BUTTON 202, "Delete", 100, 130, 80, 30
BEGIN
NAME "Delete"

Page 21 of 47

END

BUTTON 203, "Clear", 190, 130, 80, 30
BEGIN
NAME "Clear"
END
END

Page 22 of 47

BBj GUI Using Callbacks (cust-bbj.txt)
Back to top

BBj inherits the functionality of previous versions of the BBx language, but it also adds many
new features. BBj 1.0 introduced object variables and an object-oriented syntax to the BBx
language. In this sample, callbacks replace the event loop and deliver two distinct advantages:

● Easier-to-understand code, especially for programmers who are more comfortable with
modern object-oriented syntax

● Overhead reduction, particularly over slow client/server connections, because BBj only
fires events for the callbacks the developer had defined

rem ' Customer master file maintenance (BBj GUI user interface)

dim customer$:"id:c(6),name:c(32),phone:c(24)"
filename$ = "customer.dat"
customer = unt
open (customer,err=makefile)filename$
goto init

makefile:
mkeyed filename$,[0:1:6],0,64
open (customer)filename$
while 1

dread customer.id$,customer.name$,customer.phone$,err=eof
write record(customer)customer$
continue

eof:
break

wend

data "BASIS","BASIS International Ltd.","+1.505.345.5232"
data "CHILE","Chile Company","+1.555.555.1212"

init:
sysgui = unt
open (sysgui)"X0"; rem ' ALIAS X0 SYSGUI

sysgui! = bbjapi().getSysGui()
window! = sysgui!.addWindow(100,100,280,170,"Customers",00010003,$00c00000$)
window!.addStaticText(101,10,10,80,30,"ID:",8000)
id! = window!.addEditBox(102,100,10,70,30,$$,$$)
window!.addStaticText(103,10,50,80,30,"Name:",8000)
name! = window!.addEditBox(104,100,50,170,30,$$,$$)
window!.addStaticText(105,10,90,80,30,"Phone:",8000)
phone! = window!.addEditBox(106,100,90,170,30,$$,$$)
update! = window!.addButton(201,10,130,80,30,"Update",$$)
delete! = window!.addButton(202,100,130,80,30,"Delete",$$)
clear! = window!.addButton(203,190,130,80,30,"Clear",$$)

id!.setText("BASIS")
id!.focus()

Page 23 of 47

gosub fetch

id!.setCallback(id!.ON_EDIT_MODIFY,"toggle")
id!.setCallback(id!.ON_LOST_FOCUS,"fetch")
update!.setCallback(update!.ON_BUTTON_PUSH,"update")
delete!.setCallback(delete!.ON_BUTTON_PUSH,"remove")
clear!.setCallback(clear!.ON_BUTTON_PUSH,"clear")
window!.setCallback(window!.ON_CLOSE,"eoj")

process_events

eoj:
release

toggle:
id$ = cvs(id!.getText(),7)
update!.setEnabled(len(id$))
delete!.setEnabled(len(id$))
return

fetch:
id$ = pad(cvs(id!.getText(),7),6)
if customer.id$ = id$ then return
dim customer$:fattr(customer$)
let customer.id$ = id$
read record(customer,key=customer.id$,dom=notfound)customer$
notfound:
gosub display
return

update:
customer.id$ = ctrl(sysgui,102,1)
customer.name$ = ctrl(sysgui,104,1)
customer.phone$ = ctrl(sysgui,106,1)
write record (customer)customer$
i = msgbox("Customer "+customer.id$+" updated.",0,"Updated")
gosub clear
return

remove:
remove (customer,key=customer.id$,dom=nodelete)
i = msgbox("Customer "+customer.id$+" deleted.",0,"Deleted")
nodelete:
gosub clear
return

clear:
dim customer$:fattr(customer$)
gosub display
id!.focus()
return

display:

Page 24 of 47

id!.setText(cvs(customer.id$,3))
name!.setText(cvs(customer.name$,3))
phone!.setText(cvs(customer.phone$,3))
return

Page 25 of 47

BBj GUI Using Callbacks and Resource File (cust-bbj.src)
Back to top

In this sample, the mnemonics have been replaced by object method calls to retrieve window
and control information from the cust.arc file:

rem ' Customer master file maintenance (BBj GUI user interface)

dim customer$:"id:c(6),name:c(32),phone:c(24)"
filename$ = "customer.dat"
customer = unt
open (customer,err=makefile)filename$
goto init

makefile:
mkeyed filename$,[0:1:6],0,64
open (customer)filename$
while 1

dread customer.id$,customer.name$,customer.phone$,err=eof
write record(customer)customer$
continue

eof:
break

wend

data "BASIS","BASIS International Ltd.","+1.505.345.5232"
data "CHILE","Chile Company","+1.555.555.1212"

init:
sysgui=unt
open(sysgui)"X0"
sysGui!=BBjAPI().getSysGui()
window!=sysGui!.createTopLevelWindow(sysGui!.resOpen("cust.arc"),101)

id!=window!.getControl(102)
name!=window!.getControl(104)
phone!=window!.getControl(106)
update!=window!.getControl(201)
delete!=window!.getControl(202)
clear!=window!.getControl(203)

id!.setText("BASIS")
id!.focus()

gosub fetch

id!.setCallback(id!.ON_EDIT_MODIFY,"toggle")
id!.setCallback(id!.ON_LOST_FOCUS,"fetch")
update!.setCallback(update!.ON_BUTTON_PUSH,"update")
delete!.setCallback(delete!.ON_BUTTON_PUSH,"remove")
clear!.setCallback(clear!.ON_BUTTON_PUSH,"clear")
window!.setCallback(window!.ON_CLOSE,"eoj")

Page 26 of 47

process_events

eoj:
release

toggle:
id$ = cvs(id!.getText(),7)
update!.setEnabled(len(id$))
delete!.setEnabled(len(id$))
return

fetch:
id$ = cvs(id!.getText(),6)
if customer.id$ = id$ then return
dim customer$:fattr(customer$)
let customer.id$ = id$
read record(customer,key=customer.id$,dom=notfound)customer$
notfound:
gosub display
return

update:
customer.id$ = id!.getText()
customer.name$ = name!.getText()
customer.phone$ = phone!.getText()
if len(cvs(customer_id$,3))

write record (customer)customer$
i = msgbox("Customer "+customer.id$+" updated.",0,"Updated")

else
i = msgbox("Empty ID. Record not written.",0,"Not Written")

endif
gosub clear
return

remove:
remove (customer,key=customer.id$,dom=nodelete)
i = msgbox("Customer "+customer.id$+" deleted.",0,"Deleted")
nodelete:
gosub clear
return

clear:
dim customer$:fattr(customer$)
gosub display
id!.setEnabled(1)
id!.focus()
return

display:
id!.setText(cvs(customer.id$,3))
name!.setText(cvs(customer.name$,3))
phone!.setText(cvs(customer.phone$,3))
return

Page 27 of 47

BBj GUI Using Objects (cust-obj.txt)
Back to top

BBj 6.0 introduced custom objects – developer-defined objects implemented in BBj. This version
of the sample program implements the same GUI interface as the previous versions, it
uses a custom object. For an introduction to BBj custom objects, refer to the
BBjCustomObjectsTutorial.

rem ' Customer master file maintenance (BBj GUI user interface - objects)

sysgui = unt
open (sysgui)"X0"; rem ' ALIAS X0 SYSGUI

declare Sample Sample!
Sample! = new Sample()
Sample!.edit()
release

class public Sample

field private BBjSysGui sysgui!

field private BBjNumber CustFile
field private BBjTemplatedString Customer!
field private BBjTopLevelWindow Window!
field private BBjEditBox ID!
field private BBjEditBox Name!
field private BBjEditBox Phone!
field private BBjButton Update!
field private BBjButton Delete!
field private BBjButton Clear!

method public Sample()
#sysgui! = bbjapi().getSysGui()

methodend

method public void openFile()
Template$ = "ID:c(6),name:c(32),phone:c(24)"
#Customer! = bbjapi().makeTemplatedString(Template$)
Filename$ = "Customer.dat"
#CustFile = unt
open (#CustFile,err=makefile)Filename$

methodret
makefile:

mkeyed Filename$,[0:1:6],0,64
open (#CustFile)Filename$
dim Customer$:Template$
while 1

dread Customer.ID$,Customer.name$,Customer.phone$,err=eof
write record(#CustFile)Customer$
continue

eof:

Page 28 of 47

http://www.basis.com/solutions/BBj_CustomObjects.pdf
http://www.basis.com/solutions/BBj_CustomObjects.pdf
http://www.basis.com/solutions/BBj_CustomObjects.pdf

break
wend
data "BASIS","BASIS International Ltd.","+1.505.345.5232"
data "CHILE","Chile Company","+1.555.555.1212"

methodend

method public void initControls()
#Window! = #sysgui!.addWindow(100,100,280,170,

: "Customers",00010003,$00c00000$)
#Window!.addStaticText(101,10,10,80,30,"ID:",8000)
#ID! = #Window!.addEditBox(102,100,10,70,30,$$,$$)
#Window!.addStaticText(103,10,50,80,30,"Name:",8000)
#Name! = #Window!.addEditBox(104,100,50,170,30,$$,$$)
#Window!.addStaticText(105,10,90,80,30,"Phone:",8000)
#Phone! = #Window!.addEditBox(106,100,90,170,30,$$,$$)
#Update! = #Window!.addButton(201,10,130,80,30,"Update",$$)
#Delete! = #Window!.addButton(202,100,130,80,30,"Delete",$$)
#Clear! = #Window!.addButton(203,190,130,80,30,"Clear",$$)

methodend

method public void initEvents()
#ID!.setCallback(#ID!.ON_EDIT_MODIFY,#this!,"doToggle")
#ID!.setCallback(#ID!.ON_LOST_FOCUS,#this!,"doFetch")
#Update!.setCallback(#Update!.ON_BUTTON_PUSH,#this!,"doUpdate")
#Delete!.setCallback(#Delete!.ON_BUTTON_PUSH,#this!,"doDelete")
#Clear!.setCallback(#Clear!.ON_BUTTON_PUSH,#this!,"doClear")

methodend

method public void initDemo()
#ID!.setText("BASIS")
#fetch()
#ID!.focus()

methodend

method public void edit()
#openFile()
#initControls()
#initEvents()
#initDemo()
#Window!.setCallback(#Window!.ON_CLOSE,"eoj")

process_events

eoj:
#Window!.destroy()

methodend

method public void doToggle(BBjEditModifyEvent event!)

ID$ = cvs(#ID!.getText(),7)
#Update!.setEnabled(len(ID$))
#Delete!.setEnabled(len(ID$))

methodend

method public void doFetch(BBjLostFocusEvent event!)

Page 29 of 47

#fetch()
methodend

method public void fetch()
ID$ = pad(cvs(#ID!.getText(),7),6)
if #Customer!.getFieldAsString("ID") = ID$ then methodret
#Customer!.setFieldValue("ID",ID$)
read record(#CustFile,key=ID$,dom=notfound)Customer$
#Customer!.setString(Customer$)

notfound:
#display()

methodend

method public void doUpdate(BBjButtonPushEvent event!)
#Customer!.setFieldValue("ID",#ID!.getText())
#Customer!.setFieldValue("name",#Name!.getText())
#Customer!.setFieldValue("phone",#Phone!.getText())
write record (#CustFile)#Customer!.getString()
i = msgbox("Customer "+#Customer!.getFieldAsString("ID")+

: " updated.",0,"Updated")
#clear()

methodend

method public void doDelete(BBjButtonPushEvent event!)
ID$ = #Customer!.getFieldAsString("ID")
remove (#CustFile,key=ID$,dom=nodelete)
i = msgbox("Customer "+ID$+" deleted.",0,"Deleted")

nodelete:
#clear()

methodend

method public void doClear(BBjButtonPushEvent event!)
#clear()

methodend

method public void clear()
#Customer! = bbjapi().makeTemplatedString(#Customer!.fattr())
#display()
#ID!.focus()

methodend

method public void display()
#ID!.setText(cvs(#Customer!.getFieldAsString("ID"),3))
#Name!.setText(cvs(#Customer!.getFieldAsString("name"),3))
#Phone!.setText(cvs(#Customer!.getFieldAsString("phone"),3))

methodend

classend

Page 30 of 47

BBj GUI Using Objects and Resource File (cust-obj.src)
Back to top

This version of the sample program is the same as the previous one in that it uses a custom
object, but this version also makes use of the cust.arc file.

rem ' Customer master file maintenance (BBj GUI user interface - objects)

sysgui = unt
open (sysgui)"X0"; rem ' ALIAS X0 SYSGUI

declare Sample Sample!
Sample! = new Sample()
Sample!.edit()
release

class public Sample

field private BBjSysGui sysgui!
field private BBjNumber CustFile
field private BBjTemplatedString Customer!
field private BBjTopLevelWindow Window!
field private BBjControl ID!
field private BBjControl Name!
field private BBjControl Phone!
field private BBjControl Update!
field private BBjControl Delete!
field private BBjControl Clear!

method public Sample()
#sysgui! = bbjapi().getSysGui()

methodend

method public void openFile()
Template$ = "ID:c(6),name:c(32),phone:c(24)"
#Customer! = bbjapi().makeTemplatedString(Template$)
Filename$ = "Customer.dat"
#CustFile = unt
open (#CustFile,err=makefile)Filename$

methodret
makefile:

mkeyed Filename$,[0:1:6],0,64
open (#CustFile)Filename$
dim Customer$:Template$
while 1

dread Customer.ID$,Customer.name$,Customer.phone$,err=eof
write record(#CustFile)Customer$
continue

eof:
break

wend

data "BASIS","BASIS International Ltd.","+1.505.345.5232"

Page 31 of 47

data "CHILE","Chile Company","+1.555.555.1212"
methodend

method public void initControls()
#Window!=#sysgui!.createTopLevelWindow(#sysgui!.resOpen("cust.arc"),101)
#ID!=#Window!.getControl(102)
#Name!=#Window!.getControl(104)
#Phone!=#Window!.getControl(106)
#Update!=#Window!.getControl(201)
#Delete!=#Window!.getControl(202)
#Clear!=#Window!.getControl(203)

methodend

method public void initEvents()
#ID!.setCallback(#ID!.ON_EDIT_MODIFY,#this!,"doToggle")
#ID!.setCallback(#ID!.ON_LOST_FOCUS,#this!,"doFetch")
#Update!.setCallback(#Update!.ON_BUTTON_PUSH,#this!,"doUpdate")
#Delete!.setCallback(#Delete!.ON_BUTTON_PUSH,#this!,"doDelete")
#Clear!.setCallback(#Clear!.ON_BUTTON_PUSH,#this!,"doClear")

methodend

method public void initDemo()
#ID!.setText("BASIS")
#fetch()
#ID!.focus()

methodend

method public void edit()
#openFile()
#initControls()
#initEvents()
#initDemo()
#Window!.setCallback(#Window!.ON_CLOSE,"eoj")

process_events

eoj:
#Window!.destroy()

methodend

method public void doToggle(BBjEditModifyEvent event!)
ID$ = cvs(#ID!.getText(),7)
#Update!.setEnabled(len(ID$))
#Delete!.setEnabled(len(ID$))

methodend

method public void doFetch(BBjLostFocusEvent event!)
#fetch()

methodend

method public void fetch()
ID$ = pad(cvs(#ID!.getText(),7),6)
if #Customer!.getFieldAsString("ID") = ID$ then methodret
#Customer!.setFieldValue("ID",ID$)
read record(#CustFile,key=ID$,dom=notfound)Customer$

Page 32 of 47

#Customer!.setString(Customer$)
notfound:

#display()
methodend

method public void doUpdate(BBjButtonPushEvent event!)
#Customer!.setFieldValue("ID",#ID!.getText())
#Customer!.setFieldValue("name",#Name!.getText())
#Customer!.setFieldValue("phone",#Phone!.getText())
if cvs(#ID!.getText(),3)<>""

write record (#CustFile)#Customer!.getString()
i = msgbox("Customer "+#Customer!.getFieldAsString("ID")+

: " updated.",0,"Updated")
else

i = msgbox("Empty ID. Record not written.",0,"Not Written")
endif
#clear()

methodend

method public void doDelete(BBjButtonPushEvent event!)
ID$ = #Customer!.getFieldAsString("ID")
remove (#CustFile,key=ID$,dom=nodelete)
i = msgbox("Customer "+ID$+" deleted.",0,"Deleted")

nodelete:
#clear()

methodend

method public void doClear(BBjButtonPushEvent event!)
#clear()

methodend

method public void clear()
#Customer! = bbjapi().makeTemplatedString(#Customer!.fattr())
#display()
#ID!.focus()

methodend

method public void display()
#ID!.setText(cvs(#Customer!.getFieldAsString("ID"),3))
#Name!.setText(cvs(#Customer!.getFieldAsString("name"),3))
#Phone!.setText(cvs(#Customer!.getFieldAsString("phone"),3))

methodend

classend

Page 33 of 47

AppBuilder Project (cust.gbf)
Back to top

All of the previous samples assume that the developer will type a program into a text editor,
compile it, and run it. This final example shows how to implement the same customer master file
maintenance program using GUIBuilder in Visual PRO/5 or BBj, or AppBuilder, a component of
the BASIS IDE first introduced in BBj 6. Using the BASIS IDE, the developer would go through
the following steps:

Page 34 of 47

Step 1: Create the resource file, cust.arc, using the BASIS IDE FormBuilder.

Page 35 of 47

Step 2: Right-click on the resource file to create an AppBuilder project file.

Page 36 of 47

Step 3: Open the AppBuilder project file, cust.gbf.

Page 37 of 47

Step 4: Define all required subroutines and event handlers.

Page 38 of 47

Step 5: Build ([F11]) the program (cust.src) and run it ([F6]).

For more information, refer to the following tutorials in the online documentation:
● AppBuilder Tutorial
● FormBuilder Tutorial
● Working With Child Windows Tutorial

Page 39 of 47

http://www.basis.com/onlinedocs/documentation/whcsh_home.htm#id%3D33003
http://www.basis.com/onlinedocs/documentation/whcsh_home.htm#id%3D33012

Creating the Customer Form in Barista
Back to top

You can create the Customer form using one of two methods within the Barista Application
Framework®. Because Barista is a dictionary-based tool, getting the Element and Table
definitions into the dictionary is the key to either method.

● Build your dictionary from scratch using Barista's Element Types and Table definition
forms.

● Import from the BASIS DD into the Barista dictionary, using an existing DD, or creating
one by supplying string templates for your tables.

Step 1: Create a new instance of Barista with the Barista Installation Manager. Each instance of
Barista is associated with a new Barista and BASIS dictionary.

Page 40 of 47

Step 2: Barista's Create Application Wizard builds the project structure and incorporates it into
Barista and BASIS configuration files.

Build from Scratch
Back to top

If you don't have an existing BASIS DD, SQL database, or text file schema from which to import
element and table definitions, or if you simply prefer to create your database from scratch, begin
by creating Element Types and then use those elements in a Table definition. Once the table
definition is in place, you have a functional form as well.

Step 1: Lay the foundation by creating your Element Types.

Page 41 of 47

Step 2: Next, use those elements to create a Table Definition:

Step 3: Build and run the form. Barista handles record I/O and navigation, so you have a
functional form without writing any code. In addition, the framework provides built-in inquiry and
reporting.

Page 42 of 47

Import to Barista Dictionary
Back to top

Using the Import to Barista Dictionary tool, you can automate the task of getting the basic
element and table definitions into the Barista dictionary. The most common option is to import
from an existing BASIS DD. You can shortcut building a BASIS DD too, if you have string
templates that you can harvest from your existing legacy code. In addition to importing from a
BASIS DD, the import tool can also import from an SQL database or tab-delimited text files.

Step 1: Create a BASIS DD definition for the table by entering the individual column properties,
or supply a string template to quickly create all of the columns.

Page 43 of 47

Step 2: Run the Import to Barista Dictionary utility to create the Barista element and table
definitions from the import source.

Page 44 of 47

Step 3: The Import to Barista Dictionary wizard automatically creates the forms along with a
Barista menu.

Page 45 of 47

Plumb into Barista
Back to top

You may find that while you can use Barista for most of your application forms, you have a few
forms that have a level of complexity or customization that go beyond the standard Barista
model. This is a perfect use case for employing one of the other BASIS development tools to
create your form, then launch it from the Barista menu. Optionally, you can adopt a hybrid
approach and alter a form that was initially developed outside of the framework, replacing the
navigation and record I/O buttons with those used by Barista. This preserves much of the
complexity or custom nature of the form, while giving it a Barista look and feel.

Here we see how the original form, developed with AppBuilder, looks when we replace the
original buttons with Barista's navigation bar.

Page 46 of 47

Additional Barista resources:
● Barista Getting Started
● Create and Synchronize Applications
● BASIS DD to Barista App in a Flash
● Barista Plumbing Exposed

You can find the original version of this article on the BASIS FAQs page.

More Information
Please post any additional questions or comments to bbj-developer@basis.cloud. To join
that discussion forum, subscribe online. For information on using BASIS' community
forums, including the bbj-developer list, please see the BASIS Community Forum User's
Guide.

Sample Programs
● Download the Customer Master File Maintenance code samples referenced in this article

Page 47 of 47

http://documentation.basis.com/BaristaDIP/Barista%20Getting%20Started.pdf
http://documentation.basis.com/BaristaDIP/Barista%20Create%20Sync%20Apps.pdf
http://www.basis.com/sites/basis.com/advantage/mag-v12n1/ddtobarista-08.pdf
http://documentation.basis.com/BaristaDIP/Barista%20Plumbing%20Exposed.pdf
http://www.basis.cloud/faqs
http://bbj-developer@basis.cloud
https://www.basis.cloud/discussion-forums
https://docs.google.com/document/d/1qf4nIITI47Mva-Z0WEivAsDHNiATfgRDZucAUr1plSg/edit?usp=sharing
https://docs.google.com/document/d/1qf4nIITI47Mva-Z0WEivAsDHNiATfgRDZucAUr1plSg/edit?usp=sharing
https://documentation.basis.cloud/advantage/code/GuideToGuiProgramming-SamplePrograms.zip

