
BBjDocsGenerator User's Guide

BBjDocsGenerator Overview
In BBj 21.00 and higher, BBj includes a BBjDocsGenerator utility which replaces the older
BBjToJavadoc utility. The BBjDocsGenerator parses documentation blocks in object-oriented BBj
program text, and creates API documentation from it. The generated documentation is in HTML format.
It supports a number of command-line parameters that permit each run to be configured differently,
permitting customized output from processing one or more BBj source files.

Documentation Blocks in BBj Source Code
BBjDocsGenerator will process either single- or multi-line documentation blocks in a BBj program file.

● A single-line block contains a single line of BBj code that begins with "REM /**" that ends with
"*/". The documentation block includes all of the text between the opening "/**" and the
closing "*/".

● A multi-line block begins with a single line of BBj code that begins with "REM /**". It ends with
the next line of the form "REM <optional text> */". The documentation block includes all of
the text between the "/**" on the opening line and the "*/" on the closing line.

Note: since BBj is case insensitive, the REM verb can be in any case (upper, lower, or mixed).

The BBjDocsGenerator identifies and processes description documentation blocks associated with:
● a package (at the BBj program file level)
● BBj classes (at the BBj Custom Object class level)
● BBj class fields (at the BBj Custom Object field level)
● BBj class methods (at the BBj Custom Object method level)

Tags in Description Documentation Blocks
BBjDocsGenerator will recognize and process some Javadoc-style tags that are present in
documentation blocks. The following tags are supported:

● @author - defines one or more authors who have contributed to the item being described
● @version - defines the version identifier for the item being described
● @param - describes a parameter for a class method
● @return - describes the value being returned by a class method
● @see - points to additional documentation that might be helpful in understanding the item being

described
● @since - defines the version or date in which the item being described was added
● @deprecated - marks the item being described as deprecated

In general, the text following one of these tags is "free form". The individuals writing the code and
adding the tags can put whatever information they like there, so it is important that they understand
where their text will appear, who will see it, and when.

BBjDocsGenerator User's Guide

BBjDocsGenerator also supports markdown features in the documentation blocks, and applies those
markdown instructions when it generates the output documentation.

Examples of Documentation Blocks
Some examples of documentation blocks can be seen in this BBj program code:

Figure 1. Examples of Documentation Blocks

Specifying a Package in BBj Source Code
Besides recognizing documentation blocks as the source of descriptions and details for the output
documentation, BBjDocsGenerator also supports one special instruction: a package specifier.

Defining a package at the top of a BBj Source File causes the documentation generated from that file to
be organized into a package (or "namespace") with that name. For example, placing a single line of BBj
code that begins with "REM PACKAGE <NAME>" at the top of your BBj source file tells the
BBjDocsGenerator to group all of the documentation entries from this file into a single package named
"<NAME>". The "<NAME>" is white-space delimited (it is the first whole word encountered following "REM
PACKAGE").

rem /**
rem * <code>Class MyFactory</code> - My Factory Class
rem * This class works as well as can be expected...
rem * @author J. X. LastName
rem * @version 1.0
rem */
class public MyFactory
...
 REM /** BBjNumber A - Our first field */
 field private static BBjNumber A
...
 Rem /**
 rEm * Constructor MyFactory
 REM * @see <a href =
"https://documentation.basis.com/BASISHelp/WebHelp/bbjwindow.htm" target =
"_blank">BBjWindow for more details
 reM * @author A. B. SomeOtherLastName
 REM */
 method public MyFactory()
...
 rem /**
 rem * Method createNewFrame:
 rem * Instantiate a wizard frame
 rem * @param BBjTopLevelWindow Wizard window object
 rem * @param HashMap Common data map
 rem * @return BBjNumber Frame number
 rem */
...

BBjDocsGenerator User's Guide

Note: since BBj is case insensitive, the "REM PACKAGE" text can be in any case (upper, lower, or
mixed).

Examples of Package Tags
Some examples of package tags can be seen below (where each block of text represents the text at the
top of a different BBj source file):
File #1:

File #2:

File #3:

Figure 2. Examples of Package Tags

Defining these packages at the tops of three different BBj Source Files will cause BBjDocsGenerator to
generate its documentation in a similar folder structure. In this example, the "main" folder would be in
the output folder, with "sub1" and "sub2" folders under it like this:

<output folder>

+-- main

+------ sub1

+------ sub2

Using this model, you can organize your documentation output in a variety of ways.

Executing BBjDocsGenerator from a BBj Program
To generate documentation files for each of a list of BBj source files, call one of the
BBjDocsGenerator.generateBBjdoc() methods in a BBj program such as the example program
shown in Figure 3.

rem /**
rem * Optional package comments
rem */
rem package main

rem /**
rem * Optional package comments
rem */
rem package main.sub1

rem /**
rem * Optional package comments
rem */
rem package main.sub2

BBjDocsGenerator User's Guide

Figure 3. A Simple BBj Program to Run the BBjDocsGenerator

In order to instantiate a BBjDocsGenerator and a BBjDocsParameters, BBj must be able to find
definitions for those classes. These classes are defined in the BBjDocsGenerator.jar file that is installed
in the <bbj_home>/lib folder beginning with BBj 20.30. For BBj to access that BBjDocsGenerator.jar
file, you must first define a classpath that tells BBj where to find it. For this example, we defined a
classpath named docs_generator in the Enterprise Manager as shown in Figure 4 .

use java.util.ArrayList
use com.basis.bbjutilities.bbjdocsgenerator.BBjDocsGenerator
use com.basis.bbjutilities.bbjdocsgenerator.BBjDocsParameters

REM Tell BBjDocsGenerator where to put the output files
outputDir! = "C:\BBjDocsGenerator\MyFileDocs\"

REM Create a list of the file (or files) to process
prog! = "C:\temp\MyFile.bbj"
declare ArrayList list!
list! = new ArrayList()
list!.add(prog!)
REM To process more than one file in a single execution, simply add more
REM files to list! here

REM Instantiate the BBjDocsGenerator classes needed
declare BBjDocsGenerator generator!
declare BBjDocsParameters params!
generator! = new BBjDocsGenerator()
params! = new BBjDocsParameters()

REM Define optional parameters telling BBjDocsParameters how to run
params!.enableVerbose()

REM Tell BBjDocsGenerator to generate documentation for each file in
REM list!, putting the output files in outputDir!, using the parameters
REM in params! to control the output
generator!.generateBBjdoc(list!, outputDir!, params!)

end

BBjDocsGenerator User's Guide

Figure 4. The docs_generator Classpath for the BBjDocsGenerator

When including the BBjDocsGenerator in a BBj program, you will need to use the "-CPdocs_generator"
(classpath) argument to specify the classpath, as well as USE statements similar to those in Figure 3.

Parameters for BBjDocsGenerator.generateBBjDoc()
There are two forms of BBjDocsGenerator.generateBBjdoc() available, as shown in the table
below. Both take an ArrayList of strings as the first parameter (the list of one or more BBj source files to
process), and a string providing the full path to the folder to hold the output documentation files as the
second parameter. The third parameter is optional: a BBjDocsParameters object with one or more
parameters set to control how the file(s) are to be processed. The simple BBj program in Figure 3 uses a
BBjDocsParameters variable, params!, for that purpose.

Return Value Syntax

void generateBBjDoc(ArrayList<String> list!, String outputDir!)

void generateBBjDoc(ArrayList<String> list!, String outputDir!,
BBjDocsParameters params!)

Parameter Description

ArrayList<String> list! The list of one or more BBj Source files to process

String outputDir! The full path to the directory to hold the output documentation files

BBjDocsParameters
params!

An optional parameter specifying a BBjDocsParameters object with one
or more parameters set to control how the files are to be processed.

BBjDocsGenerator User's Guide

Standard Parameters of BBjDocsParameters
Table 1 below lists the standard BBjDocsParameters methods that are available, and the result on the
generated documentation files of setting each one.

Parameter Methods Description

Author boolean isEnabledAuthorTag()
void enableAuthorTag()
void disableAuthorTag()

Controls whether the text following an
@author tag is included in the generated
documentation. By default, the text following
an @author tag is NOT included.

Bottom Text boolean hasBottomText()
void setBottomText(String)
void clearBottomText()
String getBottomText()

Controls writing text as the bottom line of each
generated document. By default, there is no
bottom text.

Document
Title

boolean hasDocumentTitle()
void setDocumentTitle(String)
void clearDocumentTitle()
String getDocumentTitle()

Controls writing text as the title of each
overview-summary file. By default, there is no
title text.

Document
Visibility

boolean isIncludedPrivate
Visibility()

boolean isIncludedProtected
Visibility()

boolean isIncludedPublic
Visibility()

String getVisibility()
void

includePublicProtectedPrivate
Visibility()

void includePublicProtected
Visibility()

void includePublicVisibility()

Controls the highest level of visibility of items
(classes and methods) that will appear in the
output documentation. By default, only items
with public visibility will appear in the output
documentation.

● Each isIncluded…() method
returns true or false to report whether
that specific visibility level will appear
in the output or not.

● getVisibility() returns one of
three text strings representing the
highest visibility level that will appear
in the output. Items with lower visibility
levels will also appear:

○ "private" (the highest level)
○ "protected"
○ "public" (the lowest level)

● Each includePublic…() method
sets the visibility level(s) that will
appear in the output. For clarity's
sake, each method specifies all of the
levels that will appear (be included).

Log Path boolean hasLogFilePath()
void setLogFilePath(String)
void clearLogFilePath()
String getLogFilePath()

Controls the full path to the file where the log
entries from document generation should be
saved if the Verbose parameter is enabled. By
default, no log file is created.

BBjDocsGenerator User's Guide

New Lines boolean isEnabledConverting
Newlines()

void enableConverting Newlines()
void disableConverting

Newlines()

Controls the conversion of newline characters
("\n") to "
" tags. By default, there is no
conversion.
NOTE: Even if conversion is enabled, only
newline characters ("\n") that are not followed
by an HTML tag are converted.

Deprecated
List

boolean isEnabledCreating
DeprecatedList()

void enableCreating
DeprecatedList()

void disableCreating
DeprecatedList()

Controls the creation of a list of deprecated
items when generating the documentation. By
default, creating a list of deprecated items is
enabled (a list will be created).

Index Page boolean isEnabledCreating
IndexTab()

void enableCreatingIndexTab()
void disableCreatingIndexTab()

Controls the creation of an Index tab in the
generated output. By default, creating an
index tab is enabled (an index tab will be
created).

Since Tag boolean isEnabledSinceTag()
void enableSinceTag()
void disableSinceTag()

Controls whether the text following a @since
tag is included in the generated
documentation. By default, the text following a
@since tag is included.

Timestamp boolean isEnabledTimestamp()
void enableTimestamp()
void disableTimestamp()

Controls the inclusion of a timestamp in the
generated output files to indicate when they
were generated. By default a timestamp is
generated and written into a hidden HTML
comment at the beginning of each page.

Tree boolean isEnabledCreating
TreeOverview()

void enableCreating
TreeOverview()

void disableCreating
TreeOverview()

Controls the creation of a tree overview when
generating the documentation. By default,
creating a tree overview is enabled (a tree
overview will be created).

Stylesheet
Path

boolean hasStylesheetPath()
void setStylesheetPath(String)
void clearStylesheetPath()
String getStylesheetPath()

Controls the full path to a file containing the
stylesheet for document generation. By
default, no stylesheet file will be used, and the
default stylesheet is used instead.

Top Text boolean hasTopText()
void setTopText(String)
void clearTopText()
String getTopText()

Controls writing text as the top line of each
generated document. By default, there is no
top text.

Verbose boolean isVerbose()
void enableVerbose()
void disableVerbose()

Controls whether entries will be written to the
log file during documentation generation. By
default, verbose is disabled (no log entries are
written to the log file). NOTE: even if verbose
is enabled, log entries will only be written if a
log file is also specified using the Log Path
parameter.

BBjDocsGenerator User's Guide

Table 1. The Standard BBjDocsParameters Methods to Customize the BBjDocsGenerator

Advanced Parameters of BBjDocsParameters
Table 2 below lists the advanced BBjDocsParameters methods that are available, and provides a
high-level description of the result on the generated documentation files of setting each one.

Version boolean isEnabledVersionTag()
void enableVersionTag()
void disableVersionTag()

Controls whether the text following a
@version tag is included in the generated
documentation. By default, the text following a
@version tag is NOT included.

Parameter Method Description

Class
Placeholder
List

HashMap getStandardClass
PlaceHoldersList()

void addClassPlaceHolder(
String, String, String)

void setClassPlaceHoldersList(
String, HashMap)

Manage a list of standard placeholders
(substitution tags) to apply when processing
classes.

Class
Template

boolean hasClassTemplate()
String getClassTemplate()
void setClassTemplate(String)
void clearClassTemplate()

Manage a custom template to be used to
display items in the class section. The string
passed in is a full path to the file containing
the new template. The file is read and its
content is stored in this attribute (the path is
not stored).

Deprecated
Placeholder
List

HashMap getDeprecated
PlaceHoldersList()

void addDeprecatedPlaceHolder(
String, String)

Manage a list of placeholders (substitution
tags) to apply when processing the entries in
the deprecated section.

Deprecated
Template

boolean hasDeprecatedTemplate()
String getDeprecatedTemplate()
void setDeprecatedTemplate(

String)
void clearDeprecatedTemplate()

Manage a custom template to be used to
display items in the deprecated section. The
string passed in is a full path to the file
containing the new template. The file is read
and its content is stored in this attribute (the
path is not stored).

Index
Placeholder
List

HashMap getIndex
PlaceHoldersList()

void addIndexPlaceHolder(
String, String)

Manage a list of placeholders (substitution
tags) to apply when processing the entries in
the index section.

Index
Template

boolean hasIndexTemplate()
String getIndexTemplate()
void setIndexTemplate(String)
void clearIndexTemplate()

Manage a custom template to be used to
display items in the index section. The string
passed in is a full path to the file containing
the new template. The file is read and its
content is stored in this attribute (the path is
not stored).

BBjDocsGenerator User's Guide

Table 2. The Advanced BBjDocsParameters Methods to Customize the BBjDocsGenerator

You should not need to use these advanced methods, and thus a detailed explanation of how to use each
method is not included here.

Output Files
After successfully running the BBjDocsGenerator, you will find that it created a collection of files in or
under the folder you specified as the outputDir! argument to generateBBjdoc(list!,
outputDir!, params!). For example, if you processed exactly one BBj program file, MyClass.bbj,
that contained a comment setting the package as MyPackage and exactly one class named MyClass,
you would see the following subfolders and files in outputDir!:

● allclasses.html
● allclasses-frame.html

Overview
Placeholder
List

HashMap getOverview
PlaceHoldersList()

void addOverviewPlaceHolder(
String, String)

Manage a list of placeholders (substitution
tags) to apply when processing the entries in
the overview section.

Overview
Template

boolean hasOverviewTemplate()
String getOverviewTemplate()
void setOverviewTemplate(

String)
void clearOverviewTemplate()

Manage a custom template to be used to
display items in the overview section. The
string passed in is a full path to the file
containing the new template. The file is read
and its content is stored in this attribute (the
path is not stored).

Tree
Placeholder
List

HashMap getTree
PlaceHoldersList()

void addTreePlaceHolder(
String, String)

Manage a list of placeholders (substitution
tags) to apply when processing the entries in
the tree section.

Tree
Template

boolean hasTreeTemplate()
String getTreeTemplate()
void setTreeTemplate(String)
void clearTreeTemplate()

Manage a custom template to be used to
display items in the tree section. The string
passed in is a full path to the file containing
the new template. The file is read and its
content is stored in this attribute (the path is
not stored).

Use
Placeholder
List

HashMap getUse
PlaceHoldersList()

void addUsePlaceHolder(String,
String, String)

void setUsePlaceHoldersList(
String, HashMap, String)

Manage a list of placeholders (substitution
tags) to apply when processing the entries in
the use section.

Use
Template

boolean hasUseTemplate()
String getUseTemplate()
void setUseTemplate(String)
void clearUseTemplate()

Manage a custom template to be used to
display items in the use section. The string
passed in is a full path to the file containing
the new template. The file is read and its
content is stored in this attribute (the path is
not stored).

BBjDocsGenerator User's Guide

● deprecated-list.html
● help.html
● Index.html
● index-all.html
● overview-frame.html
● overview-summary.html
● overview-tree.html
● script.js
● stylesheet.css
● class-use (folder)

○ MyClass.html
● MyPackage (folder)

○ MyClass.html
○ package-frame.html
○ package-summary.html

Let's take a look at those folders and files, and see what is in each of them.

Folder and/or File Description

allclasses.html This file contains only a hyperlink-list of each of the classes in
this documentation set, without a class description and without
using any CSS template or formatting.

allclasses-frame.html This file contains a hyperlink-list of each of the classes in this
documentation set, without a class description. This page
applies the class frame template, so its layout and formatting
are based on the CSS and class template files.

deprecated-list.html This file contains a list of the classes and methods in this
documentation set that have the @deprecated tag. If there are
none, this file merely states that. A deprecated class or method
is not recommended for use, and if possible a suggested
alternative is given. Deprecated items may be removed in future
implementations.

help.html This file offers explanatory text and other helpful information
about BBjDocsGenerator and its logic.

index.html This file lists all of the packages and class files resulting from
BBjDocsGenerator processing this documentation set. It
includes the output from overview-frame.html and
overview-summary.html.

index-all.html This file lists all of the class files resulting from
BBjDocsGenerator processing this documentation set, grouped
by first letter in increasing alphabetic order.

overview-frame.html This file contains a list of all of the packages in this
documentation set, and a link to all-classes.html.

BBjDocsGenerator User's Guide

overview-summary.html This file contains a hyperlink-list of each of the packages in this
documentation set, without any description or other details.

overview-tree.html This file contains a hyperlink-list of each of the classes in this
documentation set, organized hierarchically by package.

script.js This file contains a small number of javascript functions used by
the other output pages.

stylesheet.css This file defines a cascading style sheet whose components are
used by a number of the other output pages.

class-use/ (folder) This folder holds one file per class, each listing "which other
classes in this documentation set use this class". In this
context, using a class refers to using the class type for a
method argument, field, or return type.

class-use/MyClass.html This file contains all of the information available about which
other classes in this documentation set use the class
"MyClass". In this case, there are no other classes, so this file
merely states that. If there had been multiple classes, and one
or more of those other classes had used the class MyClass as a
type, this file would have identified those classes and provided a
hyperlink to each.

MyPackage/ (folder) This folder was created because of the package comment that
identified the package as "MyPackage". It should contain one
file per class in that package, each named after a class. NOTE:
If there had been no package named MyPackage, there would
be no MyPackage folder.

MyPackage/MyClass.html Because class MyClass is defined in the BBj program file that
also has the MyPackage package comment, we get a
MyClass.html file that documents the class MyClass. Had there
been other classes in MyPackage, each would have its own file
named after that class. NOTE: If there had been no package
comment, then all of these <class>.html files would instead be
directly in the requested outputDir!.

MyPackage/package-frame.html This file contains all of the information available about the
package MyPackage, including a hyperlink and a description for
each class in MyPackage. This page applies the class frame
template, so its layout and formatting are based on the CSS and
class template files.

MyPackage/package-summary.html This file contains only a hyperlink-list of each of the classes in
MyPackage, without a class description and without the CSS
template or formatting.

BBjDocsGenerator User's Guide

Summary
BBjDocsGenerator creates an array of output files that together provide documentation that is suitable for
your BBj Application Programming Interface (API). It relies upon the BBj program files containing a
number of tags with accompanying description text to define the documentation it generates. The
BBjDocsGenerator was created based on the Java concept of Javadoc API documentation; in the near
future the BBjDocsGenerator should be tailored more for BBj programs and details than for Java. There
will also be an Eclipse plug-in for the BBjDocsGenerator in the near future, which will provide a more
user-friendly interface than the command-line UI outlined in this document.

