
Barista® Application Framework

Getting Started

Introduction 1

Logging In 1

Environment 2

Using the Barista Application Framework 3

Maintenance Form 4
Record Query 5
First Record 6
Next Record 7
Last Record 8
Previous Record 9
New Record 10
Save Record 11
Delete Record 12
Undo Field Changes 13
Undo Record Changes 14
Record Save As 15
Find Field Records 16
Display Master Record 17
Print Record 18
Print All Records 19
Customize Entry 20
Record Options 20
Convert Case 20

Maintenance Grid 21
Add New 22
Insert New 23
Pending Changes 24
Expand Grid Record 25
Closing a Grid Maintenance Program 26

Options Entry Form 27

Options Entry Grid 27

Building Applications With Barista 28

Documentation Conventions 28

Element Types 28
Header 28
Element Types Inquiry 29
Definition 29
Validation 32
Element Type Options 33

Element Comments 33
Element List Definitions 34
Element Where-Used Inquiry 34

Tables 35
Header 36
Alias Definition 36
Security 36
Element Detail 37
Table Options 37

Key Definitions 38
Table Comments 38
Create/Update Table 39

Form Manager 39

Barista Application Framework 1 Getting Started – Table of Contents

Build Defaults 40

Barista Application Framework 2 Getting Started – Table of Contents

Form Designer 40
Columns 41
Form Attributes 41
Column Attributes 49
Form Editor 56
Form Editor Options 56

Create New Tab 57
Maintain Auxiliary Columns 57
Maintain Derived Data Elements 57
Maintain Auxiliary Labels 58
Maintain Table 58
Edit Callpoints 58
Clear Formatting Attributes 58

Form Editor Control Options 59
Create New Tab 59
Create/Maintain Group Header 59
Optional Definitions 59
Lock Control Position 59
Maintain Element Type 59
Maintain Table 59
Edit Callpoints 59

Callpoints 60
Table Callpoint Codes (Mainline Processing) 60
Table Callpoint Codes (Record Delete) 61
Table Callpoint Codes (Miscellaneous) 61
Column/Field Callpoint Codes 62
The Callpoint! Object 62

Callpoint Editor 62
Flow Diagrams 64

Form Maintenance Flow – Overview 64
Form Maintenance Flow – Create or Update Record 65
Form Maintenance Flow – Delete, Query, Next, Previous, First, Last 66
Form Maintenance Flow – Copy, Print, and Custom Options 67
Grid Maintenance Flow – Overview 68
Column Entry Flow Detail 69

Callpoint Code Fragments 70
Callpoint Object Methods (CMTH) 70
Column Variable Names (COLS) 71
Get Column Data (GETC) 71
Set Column Data (SETC) 71
Get Column Undo Data (GETU) 72
Get Table Attributes (GTAV) 72
Set Table Attributes (STAV) 73
Get Column Attributes (GCAV) 74
Set Column Attributes (SCAV) 75
Entered Arguments (ENTA) 75
System Variables (SVAR) 76
System Objects (SOBJ) 76
Global String Values (STBL) 76
Table Open Subroutines (TBLO) 77
Get Open Table Device (TDEV) 78
Get Open Table Template (TTPL) 78
Get Current Template (CTPL) 79
File Includes (INCS) 79

Menu Designer 80
Add Application Menu 81
Add Submenu 82
Add Menu Item 82
Other Options 83

Reference 84

Barista Application Framework 3 Getting Started – Table of Contents

System Publics (SPUB) 84
bac_create_table.bbj 85
bac_error.bbj 85
bac_key_template.bbj 85
bac_message.bbj 85
bas_sequences.bbj 87
bac_open_tables.bbj 87
bac_winsize.bbj 87
bam_config.bbj 89
bam_enable.bbj 89
bam_enable_pop.bbj 92
bam_grid_init.bbj 92
bam_inquiry.bbj 94
bam_prog_bar.bbj 94

Barista Data Structures 95
Table Attribute Codes 97
Column Attribute Codes 99

Process Status 102

Toolbar Reference 103

Status Bar Reference 105

Mask Reference 106
Numeric Masking 106
String Masking 106

Introduction
Barista is:

● A dictionary-based GUI development platform
● A workbench for developing data-centric applications
● An application runtime environment for end users

Logging In

The Barista login form will be displayed in the language associated with your BBj installation. To change
languages, select an option in the list in the lower right corner of the form.

As a new language is selected, the login form redisplays in the new language:

Barista Application Framework 4 Getting Started – Table of Contents

Enter the user ID and password (if any) and click the [Login] button.

Barista Application Framework 5 Getting Started – Table of Contents

Environment
The Barista Application Framework is organized as an MDI (Multiple Document Interface) window with the
following sections:

1. Menu Bar. Menu items are dynamically enabled and disabled based on the current task.
2. Toolbar. Toolbuttons are dynamically enabled and disabled based on the current task.
3. Application List. From this list, the user or developer selects the application to work with.
4. Application Menu. From this menu, the user or developer selects a specific task within an application.
5. History. This is a list of all tasks performed during the current session.
6. Processes. Long-running processes display their status here. See Process Status.
7. Status bar. See Status Bar Reference
8. MDI client area. This is where active tasks will appear.
9. Progress. Progress meter displayed when loading and saving tasks.

The panel containing items 3 through 6 can be docked/undocked using File🡺Dock Applications Menu or hidden
using File🡺Show Applications Menu.

Barista Application Framework 6 Getting Started – Table of Contents

http://en.wikipedia.org/wiki/Multiple_document_interface
http://en.wikipedia.org/wiki/Menu_bar
http://en.wikipedia.org/wiki/Toolbar
http://en.wikipedia.org/wiki/Status_bar

Using the Barista Application Framework
To run a program in the Barista Application Framework, select an application from the application list and a
program from the application menu. Multiple programs can be running at the same time. For example:

Barista generates forms according to one of four basic styles:
1. Maintenance Form. A detail form to maintain a data file.
2. Maintenance Grid. A grid-based form to maintain a data file.
3. Options Entry Form. A detail form used to enter information that will be passed to a program.
4. Options Entry Grid. A grid-based form used to enter information that will be passed to a program.

Barista Application Framework 7 Getting Started – Table of Contents

Maintenance Form
The Maintenance Form is a formatted screen for maintaining records in a table. For example:

Barista Application Framework 8 Getting Started – Table of Contents

Record Query

To query existing records, select View🡺Record Query from the menu, press [Ctrl]+Q, or press the tool
button:

Barista Application Framework 9 Getting Started – Table of Contents

First Record

To go to the first record, select Record🡺First Record from the menu, press [[Ctrl]]+Page Up, or press the
tool button:

Barista Application Framework 10 Getting Started – Table of Contents

Next Record
To go to the next record, select Record🡺Next Record from the menu, press the [Page Down] key, or press the

tool button:

Barista Application Framework 11 Getting Started – Table of Contents

Last Record

To go to the last record, select Record🡺Last Record from the menu, press [Ctrl]+Page Down, or press the
tool button:

Barista Application Framework 12 Getting Started – Table of Contents

Previous Record
To go to the previous record, select Record🡺Previous Record from the menu, press the [Page Up] key, or press

the tool button:

Barista Application Framework 13 Getting Started – Table of Contents

New Record

To clear the current record, select Record🡺New/Clear from the menu, press [Ctrl]+N, or press the tool
button:

Barista Application Framework 14 Getting Started – Table of Contents

Save Record

To save the current record, select Record🡺Save from the menu, press [Ctrl]+S, or press the tool button:

Barista Application Framework 15 Getting Started – Table of Contents

Delete Record

To delete the current record, select Record🡺Delete from the menu, press [Alt][Ctrl]+Delete, or press the tool
button:

Barista Application Framework 16 Getting Started – Table of Contents

Undo Field Changes
To restore an entry field to its initial value, press [Ctrl]+Z or select Edit🡺Undo from the menu:

Barista Application Framework 17 Getting Started – Table of Contents

Undo Record Changes
To reload the current record from disk, press [Alt]+[F5], select Record🡺Refresh Data from the menu, or press the

tool button:

Barista Application Framework 18 Getting Started – Table of Contents

Record Save As
To save the contents of the current record to a new record key, press [Ctrl]+[[Shift]]+S or select Record🡺Save As
from the menu. This makes the record key editable, so that you can save the current record under a new key:

Barista Application Framework 19 Getting Started – Table of Contents

Find Field Records

To find records for a particular field, select View🡺Find from the menu, press [Ctrl]+F, or press the tool
button, either in the toolbar or to the right of the field:

Barista Application Framework 20 Getting Started – Table of Contents

Display Master Record
To display the master record form for the current field, select Record🡺Display Master Record from the menu,

press [Ctrl]+R, or press the tool button:

Barista Application Framework 21 Getting Started – Table of Contents

Print Record

To print the current record, select File🡺Print Current Record from the menu, press [Ctrl]+P, or press the tool
button:

Barista Application Framework 22 Getting Started – Table of Contents

Print All Records
To print all records, select File🡺Print All Record from the menu:

Barista Application Framework 23 Getting Started – Table of Contents

Customize Entry
To temporarily limit data entry to a subset of fields on the form, select Edit🡺Customize Entry from the menu:

Record Options
To access additional options (not defined for all forms), right-click in the program header area, select

Record🡺Options from the menu, press [Ctrl]+O, or press the tool button:

Convert Case
In addition to standard editing features ([Ctrl]+X / [Ctrl]+C / [Ctrl]+V for Cut/Copy/Paste), Barista GUI controls also
implement a case conversion command. Press [Ctrl]+[Alt]+C (or select Edit🡺Convert Case) in any input control to
cycle through UPPERCASE, lower case, and Title Case.

Barista Application Framework 24 Getting Started – Table of Contents

Maintenance Grid
The maintenance grid is used for editing a small set of records (generally less than a few hundred) as a group.
The entire file is loaded into memory. If the record key contains a sequence number and records must be written
in the entered sequence, the records are edited as a set; changes are not written to the data file until the user
selects "Save current data" or closes the program. If the record key does not contain a sequence, the records are
written to the data file as the user leaves each row.

Barista Application Framework 25 Getting Started – Table of Contents

Add New
To add a new record to the end of the grid, select Record🡺Add New from the menu, press [Ctrl]+A, or press the

tool button:

Barista Application Framework 26 Getting Started – Table of Contents

Insert New
To insert a new record before the current grid row, select Record🡺Insert New from the menu, press

[Ctrl]+[Shift]+A, or press the tool button:

Barista Application Framework 27 Getting Started – Table of Contents

Pending Changes

Records that have been added or changed, but not yet saved to disk, show in the left margin, for example:

Barista Application Framework 28 Getting Started – Table of Contents

Expand Grid Record
To view or edit the current record in a Maintenance Form, select Record🡺Expand Grid Record from the menu,

press [Ctrl]+E, or press the tool button:

Barista Application Framework 29 Getting Started – Table of Contents

Closing a Grid Maintenance Program
To close the program, select File🡺Close from the menu, press [Ctrl]+[F4], or click the close box. If there are any
unsaved changes, the user is prompted to save or discard the changes:

Barista Application Framework 30 Getting Started – Table of Contents

Options Entry Form
Options Entry forms prompt the user for a set of data. When the user selects Record🡺Run Process or presses

[F5] or the tool button, Barista passes that data on to an overlay program (usually a report or batch update).
It also saves the data entered by the user so that it can be optionally reused the next time the form is used.

Options Entry Grid
The Options Entry Grid is used to prompt the user for multiple rows of data. As with the Options Entry Form, that
data is passed on to a report or batch update program for processing when the user selects Record🡺Run Process

or presses [F5] or the tool button.

Barista Application Framework 31 Getting Started – Table of Contents

Building Applications With Barista
Follow these steps to build a Barista form and add it to the menu system:

1. Element Types. Define the element types that will be used by a table. An element type can be defined in a
general way (e.g. TEXT_30 can be used for many different kinds of text fields), or it can correspond to a
single data element (e.g. CUSTOMER_ID always references a customer ID).

2. Tables. Define the physical layout of a table (file) and describe the data elements in the table.
3. Form Designer. Build the data entry form that will be used to maintain the table.
4. Menu Designer. Add the newly developed program to the menu system.

Documentation Conventions
Bold Italic Key field
Bold Required field
Underlined
Bold

Conditionally required
field

Shaded Display-only field

Element Types
An element type defines the structure of one or more data elements. To edit element types, select Element Types
from the Development menu.

Header
Element
Type ID

The Element Type ID must contain only letters, numbers and underscores ("_"); it is automatically
converted to uppercase. To see a list of existing Element Types, select View🡺Record Query from

the menu, press [Ctrl]+Q, or press the tool button.
Description Describe the purpose of this data element type.
Creation
Date

Displays the date on which this element type was first created.

Revision
Date

Displays the date on which this element type was last changed.

Barista Application Framework 32 Getting Started – Table of Contents

Element Types Inquiry

Definition
Data Type The data type is one of the following BBj types:

● Character (C)
● Number (N)
● Integer (I)
● Unsigned Integer (U)
● Business Math (B)
● Blob (O)

Data Subtype Several predefined data types, mostly involving standard date and time formats:
● Date (YYYYMMDD)
● Date (YYYYMM)
● Date (YYYY)
● Date (YYMMDD)
● Date (MMDD)
● Date (Julian)
● Created Date Stamp (YYYYMMDD). Automatically set by Barista when a record is

created.
● Revised Date Stamp (YYYYMMDD). Automatically updated by Barista when an

existing record is modified.
● Created Time Stamp (HHMMSS). Automatically set by Barista when a record is

created.
● Revised Time Stamp (HHMMSS). Automatically updated by Barista when an existing

record is modified.
● Time (HHMMSS)
● Time (HHMM)
● Time (MMSS)
● Postal Code
● Telephone Number
● Sequence Counter. Can only be used as a key field; must be defined as Character.

Barista automatically increments this value on the highest key currently in the table.
● Image Path. The value is entered as a filename, or any string expression that

resolves to a filename. For example:
[+IMAGE]+cvs([ITEM_ID],2)+".jpg"

Barista Application Framework 33 Getting Started – Table of Contents

Data Field
Length

Length of this field:
● 1..9999 (Character and Number)
● 1..8 (Integer and Unsigned Integer)
● 8 (Business Math)

Control Type GUI control type to be used to manipulate data elements of this type:
● CharacterEdit (BBjInputE or password-style BBjEditBox)
● CharacterSpinner (BBj InputESpinner)
● NumericEdit (BBjInputN)
● NumericSpinner (BBjInputNSpinner)
● DateEdit (BBjInputD)
● DateSpinner (BBjInputDSpinner)
● MultiLineEdit (BBjCEdit)
● ListButton (BBjListButton) (Requires Element List Definitions)
● ListBox (BBjListBox) (Requires Element List Definitions)
● CheckBox (BBjCheckBox)
● Slider (BBjSlider)
● RadioButtons (BBjRadioButton) (Requires Element List Definitions)
● None – Hidden. Used for data elements that will be stored to the file, but not

displayed on the form.
● None – Ref Only. Used to enter information for documentation (reference) purposes

only. Does not cause data to be stored to the file, and is not displayed on the form.
Window Label Enter the default label to be used when adding a data element of this type to a Maintenance

Form or Options Entry Form. The initial default value corresponds to the Description from the
header.

Column
Header

Enter the default column header to be used when adding a data element of this type to a
Maintenance Grid or Options Entry Grid, or when it appears on a columnar report. The initial
default value corresponds to the Description from the header.

Solution
Company ID

This alphanumeric code identifies the company that is defining this data element type.

Solution
Product ID

This alphanumeric code identifies the primary product that will use data elements of this type.
For example, an inventory code is used by multiple applications, but its Solution Product ID
would be the Inventory Control application.

Exempt From
Localization

Excludes this element when creating locale property files used in internationalization.

Mask Type The Mask Type is a standard predefined mask that can be selected from the following list:

● Amount
● ID
● Units
● Percent
● Rate

● Extension
● Quantity
● Cost
● Price
● Conv Factor

● Mtl Factor
● Ovhd Factor
● Hours
● Zip Code
● Telephone

The actual value of each mask is defined in the "Input/Display Masks" program, which can be
accessed from the Administration menu:

Input Mask This is the mask to be used for data entry.
Output Mask This is the mask to be used for displaying and reporting data elements of this type. If not set,

the input mask is used.
Alignment Select one of:

Barista Application Framework 34 Getting Started – Table of Contents

● None (default – don't justify/pad data)
● Left (Justify left – text style)
● Right (Justify right – numeric style)

Pad Character Select from the list:
● None (default)
● Space ()
● Quote (")
● Pound (#)
● Asterisk (*)
● Period (.)
● Zero (0)
● Caret (^)
● Underscore (_)

Allow blanks Allows blanks (spaces) as valid entry.
Preset Value If a value is entered here, it will be used as the enforced (display-only) value for data

elements of this type. Preset Value and Default Value are mutually exclusive; if both are set,
Preset Value is used.

Default Value If a value is entered here, it will be used as the default (editable) value for data elements of
this type. Preset Value and Default Value are mutually exclusive; if both are set, Preset Value
is used.

User Prompt The user prompt (help message) appears in the first segment of the status bar when data
elements of this type are selected.

Barista Application Framework 35 Getting Started – Table of Contents

Validation
Check
Box Data

If Control Type is CheckBox, this specifies how checked and unchecked values are written to the
data file, in the format "checked;unchecked". Typical values might be "Y;N" or "1;0".

Table Based
Validate
Data
Table

To validate a code against a lookup table, enter the table name here.

Data
Column

Select the data element from the validation table to be displayed as a description to the right of the
entered code.

Data Key If the lookup key is a complex expression, enter it here. The expression can include any combination
of BBj string functions, string literals, and [stbl] references, with @ acting as a place holder for the
data value itself. For example:
[+FIRM_ID]+"C"+@

Data Key
Name

If the validation key is not the primary key, select the secondary key here.

Use Auto
Complete

Displays an auto complete drop down list during entry.

Additional
Minimum
Length

To enforce a minimum length, enter it here.

Maximum
Length

To enforce a maximum length, enter it here.

Minimum
Value

To enforce a minimum value, enter it here.

Maximum
Value

To enforce a maximum value, enter it here.

Data
Expand
Code

If a transformation must be applied to the data when reading it from the file, select an expansion
code here. The expression is defined in the Expansion Codes maintenance program; % is the
place holder for the raw value read from the file:

Data
Compress
Code

If a transformation must be applied to the data when writing it to the file, select a compression
code here. The expression is defined in the Compression Codes maintenance program; % is the
place holder for the value as entered by the user:

Precision For NumericEdit (BBjInputN) fields, specify the decimal precision in the range -1..99.
System
Dialog

To override the default Find lookup function and map it to a File Open or File Save dialog, select a
system dialog here. The choices are:

● None (default)
● File Open
● File Save

Element Type Options

To access Element Type Options, right-click in the header or click the tool button. The options are:

Barista Application Framework 36 Getting Started – Table of Contents

● Element Comments
● Element List Definitions
● Element Where-Used Inquiry

Element Comments
Free-format notes relating to this element.

Barista Application Framework 37 Getting Started – Table of Contents

Element List Definitions
For list-oriented GUI controls (ListButton, ListBox, and RadioButton), fill in the Element List Definition to populate
the list. Barista shows the description values to the user; the corresponding codes are written to the record.

Element Where-Used Inquiry
The Element Where-Used Inquiry reports all tables that use this Data Element Type. It also provides a quick way
to rebuild those tables, a useful feature when changing the size of the element type.

Barista Application Framework 38 Getting Started – Table of Contents

Tables
The Table Maintenance program is used to define aliases for data files as well as records that don't map to data
files.

Barista Application Framework 39 Getting Started – Table of Contents

Header
Table Alias The Table Alias must follow standard identifier naming rules:

● It must start with a letter.
● It must contain only letters, numbers and underscores ("_").
● It is automatically converted to uppercase.

To see a list of existing Tables, select View🡺Record Query from the menu, press [Ctrl]+Q, or press

the tool button.
Description Enter a short description describing the purpose of this table.
Window
Title

Enter the title to be used on forms generated for this table.

Created Displays the date on which this table was first created.
Revised Displays the date on which this table was last changed.

Alias Definition
Alias Type Alias type is selected from the following list:

● Mkeyed File
● Xkeyed File
● Vkeyed File
● Single Mkeyed File
● Serial File
● Direct File
● Indexed File
● Sort File
● String File
● Child Alias - Indicates that this alias is an alternate view of an existing (parent) alias. If the Child

Alias type is selected, "Parent Alias" must be filled in.
● Options Entry - Indicates that this alias defines data to be entered using an Options Entry Form

or an Options Entry Grid; it doesn't write data permanently to a data file.
● Reference - Indicates this alias is a reference only, or “documentation” record not associated

with any disk table.
Parent
Alias

If defining a "Child Alias" (an alternate view), the "Parent Alias" is the controlling alias that defines
the file.

Primary
Table

If defining a detail table, this reference field can contain "Parent Table".

Disk File
Name

The base filename on disk.

Table Path The path to the file.
Key Length Valid key sizes are:

Single Mkeyed
File

1..12
0

Direct File 1..64
Sort File 1..64

Records A non-zero number of records must be specified for Direct and Sort Files.
Record
Length

A record length in the range 1..32767 must be specified for Direct, Indexed, and Single Mkeyed
files.

Security
Solution
Comp ID

This alphanumeric code identifies the company that is defining this table.

Solution
Prod ID

This alphanumeric code identifies the primary product that will use this table. For example, an
inventory master file is typically used by multiple applications, but its Solution Product ID would
typically be the Inventory Control application.

Export to
Inquiry
System

The inquiry system allows ad hoc SQL queries. To disable ad hoc queries for this table, deselect
"Export to Inquiry System".

Restrict
Table

When entering data validated to this table, Barista will ask if the user wishes to add the new record
if the entered data is not found.

Barista Application Framework 40 Getting Started – Table of Contents

Record
Auto Add
Restrict
Table Auto
Create

Barista will automatically create the file if not found. This stops the default behavior.

Restrict
Table
Rebuild

Disallows table rebuild.

Element Detail
Element
Type

Enter an existing Element Type ID.

Description The description is displayed from the Element Type.
Data
Element

Defaults to the same as the Element Type. The Data Element is the actual variable name used in
the record and template for table access. This value must be unique within the Element Detail
records for a specific table.

●Mult Specifies the multiplier for the length of the Element Type within a field. For example, if an Element
Type/Data Element (“RESERVE_TEXT”) with a length of 5 bytes is entered, along with a Mult value
of 4, the actual field length in the table will be 20 bytes (5 bytes * 4).

●Occ S the number of occurrences for a specfic Element Type/Data Element within a table. For example,
if an Element Type/Data Element (“SALES_AMT”) with a length of 10 bytes is entered, along with a
Occ value of 12, the table will actually contain 12 fields (“SALES_AMT_01”- “SALES_AMT_12”),
each with an length of 10 bytes.

Delim? Indicates whether this field is fixed-length or delimited.
Delim Char If this is a delimited field, select the delimiter character from the list.
●To edit the "Mult" or "Occ" values, select Record🡺Expand Grid Record from the menu, press [Ctrl]+E, or press

the tool button.

Table Options
To access Table Options, right-click in the form header, select Record🡺Options from the menu, press [Ctrl]+O, or

press the tool button.

Barista Application Framework 41 Getting Started – Table of Contents

Key Definitions

Table Comments
Free-format notes relating to this table.

Barista Application Framework 42 Getting Started – Table of Contents

Create/Update Table
Used to rebuild the table after making changes to the Table Definition. During this process, the table template is
rebuilt, and the definition is exported to the Inquiry System, if specified in the Security section of Table
Maintenance.

Form Manager
The Form Manager is the entry point to the Form Designer. To run the Form Manager, select Design🡺Form
Manager from the menu bar, press F8, select Form Manager from the Development application menu, or press

the tool button.

The Form Manager presents a list of Table aliases with the following information:
ID Table/Alias ID

Barista Application Framework 43 Getting Started – Table of Contents

Descriptio
n

Table Description

Atype Alias type
Ftype Form type
Disk File Disk file name
Sys System code
Comp Company code
Prod Product code
Rev Date The last time the table or form information was revised
Build Date The last time the form was rebuilt

Build Defaults
To set default values for some form options, select Design🡺Set Build Defaults from the menu bar.

Options selected here act as overrides; they supercede options selected in the Form Designer.

Form Designer
The Form Designer is the central workbench for creating and editing forms. To run the Form Designer, press
ENTER or double-click on an alias in the Form Manager list, select Design🡺Form Designer from the menu bar, or

press the tool button.

Barista Application Framework 44 Getting Started – Table of Contents

The Form Designer is organized around three panels:
1. Columns shows the individual components that make up the form, including the table alias, the data

elements within that table, and optional derived components, described below.
2. Attributes shows the attributes of the currently selected column.
3. Form shows a preview of the form; this is also the form editor.

Columns
A database table is a set of data elements organized into horizontal rows (records) and vertical columns (fields).
In the following sample table, Description is a column and the record for Item 000002 is a row:

ITEM DESCRIPTION CAT UOM COST WEIGHT UNIT PRICE
000001 Ancho - Pods, small CH EA 1925 113.4 GR 3.5
000002 Ancho - Pods, large CH EA 3575 226.8 GR 6.5
000003 Blue Corn Meal FL EA 11 0.45 KG 2.75
000004 Pepitas SN EA 275 85.05 GR 2.25
000040 Blue Corn Chips CO BAG 22 0.45 KG 4

Within the Barista Form Designer, the Columns panel lists the individual table columns. It also includes a
reference to the table itself and (optionally) derived elements, described below. A column can be dragged and
dropped within the list to move it on the form. Select an item on the Columns panel to view or edit that item's
attributes.

Form Attributes
To view or edit overall form attributes, select the ALIASNAME.<<ALIAS>> item at the top of the Columns panel.
The following form attributes are available:

Add
Options

Click here to define program options to be accessed using the Options menu, or to be associated
with buttons added to the bottom of the form:

Barista Application Framework 45 Getting Started – Table of Contents

http://en.wikipedia.org/wiki/Table_%28database%29
http://en.wikipedia.org/wiki/Row_%28database%29
http://en.wikipedia.org/wiki/Column_%28database%29

Descriptio
n

The option description will appear on the options menu and/or the button label.

Code A unique callpoint code to identify this option. When the user selects this option,
Barista runs the code defined for the "After Option Select" callpoint for this code.
For example:

Callpoint code is edited in the Callpoint Editor, described below.
Location Select one of:

● Options Menu – to add this option to the Options tool button. This is the
default.

● Main Form – to add a button to the bottom of the generated form.
● Menu and Form – to add this option to the Options tool button and also

add a button to the bottom of the generated form.

Description Enter a description for this form. The description will appear in the Form Manager list.
Window
Title

The Window Title defaults to the same as the Description.

Dtl Grid
Table

If this is a header/detail form, select the table to use in populating a detail grid.

Dtl Window
Tables

Optionally select one or more associated tables. These will be added to the Options tool button.

Del
Cascade
Tables

Optionally select one or more associated tables. If any delete cascade tables are specified here,
deleting a record from this table will also delete all related records (records with keys that start
with the key to this table) from the delete cascade tables.

Del Depend
Tables

Optionally select one or more associated tables. If any delete dependency tables are specified
here, any attempt to delete a record from this table will be disallowed if any of the delete
dependency tables contain related records (records with keys that start with the key to this table).

Data Key
Name

To view data in other than primary key sequence, select an alternate key here.

Parent
Alias

Imported from the Table.

Primary
Table

Imported from the Table.

Form Type The Form Type describes the form's basic structure and behavior. Barista implements four form
types.

Barista Application Framework 46 Getting Started – Table of Contents

Maintenance Form. A
formatted screen for
maintaining a table; it
displays a record at a time.
The Barista default form
presents the data
elements in a single
column, with labels down
the left side. This basic
design can be customized
using the form editor and
enhanced by adding
labels, tabs, group boxes,
and buttons.

Maintenance Grid. This is
also used for maintaining a
table, displaying the data
in a grid.

Options Entry Form. An
options entry form is used
for entering a single page
of information and passing
it on to a program for
processing. The overlay
program is typically a
report or batch update.

Options Entry Grid. This
is used for entering
multiple rows of
information in a grid, then
passing that information
over to a report or update
program for processing.

Backgroun
d Image

Select an optional background image for the form; for example:

Barista Application Framework 47 Getting Started – Table of Contents

Barista comes with a standard set of images; to install additional background images, copy them
to Barista\sys\images\im_back_*.*.

Help Tag ID Not yet implemented.
Inquiry
Options

In a Form Maintenance program, Record Query presents a list of records in the table. [Alt]ernate
query options can be added here.

Descriptio
n

A short description of the alternate query option. This will appear in the "Type"
dropdown list on the Inquiry form, as shown in the sample below.

Alias The alternate query table.
Column The alternate query column.

Inquiry
Restrict?

By default, grid-based forms allow the user to sort on any column by clicking in the column
header. When this option is selected, grid sorting is restricted to key fields to ensure optimal
performance.

Note Table Barista provides the option to store notes for any specific record entered for any defined table. To
configure this option, the developer must create a table definition with the following key format:

DD_TABLE_ALIAS – Specifies the table id for the record being created.
NOTE_KEY – The maximum length of a record key to be stored in the note table. This allows note
records for multiple tables to be store in the same Note Table.

Example:
We want to create a single Note Table to store user notes for the following tables:
TUT_CUSTOMER – Key length = 6
TUT_SALESPERSON – Key length = 3

The Note Table would be defined as:
DD_TABLE_ALIAS (16*)
NOTE_KEY (6*) – the maximum possible length of the key from TUT_CUSTOMER and
TUT_SALESPERSON
NOTE_TEXT (512*)

Optional
Defs

Click here to customize the form. The available options are:

Barista Application Framework 48 Getting Started – Table of Contents

Several of these options can be set automatically using Design🡺Set Build Defaults.
Auto save
records on
exit

If the user attempts to exit from a program with unsaved changes, the system
normally asks if the changes should be saved:

If "Auto save records on exit" is selected, the user doesn't see a confirmation
dialog; unsaved changes are automatically saved.

Redisplay
record on
save

After the user saves a modified record, the system normally clears the
Maintenance Form and moves input focus to the first field on the form. If
"Redisplay record on save" is selected, the form is not cleared, and input focus
is unchanged.

Disallow
window
resize

Forms are user-resizable by default. If "Disallow window resize" is selected,
forms are not user-resizable.

Barista Application Framework 49 Getting Started – Table of Contents

Insert row
before detail
grid

If this is a header/detail form, "Insert row before detail grid" inserts
ROW_HEIGHT pixels (default 21) between the header area and the detail
grid.

Bypass new
record
prompt

By default, the system confirms the addition of new records with:

If "Bypass new record prompt" is selected, this confirmation message is
omitted.

Bypass
delete
confirmation

By default, the system confirms record deletions with:

If "Bypass delete confirmation" is selected, this confirmation message is
omitted.

Confirm all
deletes

In rare cases, when a deletion will have significant consequences, it might be
advisable to reconfirm it before proceeding, with a message like the following:

Expand on
new grid
entry

By default, when inserting a row into a Maintenance Grid using the or

tool buttons, the grid is edited in place. When "Expand on new grid entry"
is selected, the system opens a Maintenance Form – equivalent to pressing

the tool button – for typing in the new record:

Barista Application Framework 50 Getting Started – Table of Contents

Hide saved
selection
options

By default, Options Entry Forms include a list of saved and recent options, so
that users can recall previously used options. If "Hide saved selection options"
is selected, this list is omitted:

Destroy
window on
run

By default, the Options Entry Form remains visible after control is passed from
the Options Entry Form to the overlay program. If "Destroy window on run" is
selected, the Options Entry Form is destroyed when the overlay program is
started.

Close after
call program

By default, the Options Entry Form retains control once the called program is
completed. If “Close after call program” is selected, the Options Entry Form
will process a normal exit.

Allow Print
record
option

Selecting "Allow Print record option" enables the File🡺Print Current Record

menu item and the tool button.
Allow Print
all records
option

Selecting "Allow Print all records option" enables the File🡺Print All Records
menu item.

Create
Options
button on
form

By default, any options defined under "Add Options" can be accessed from the

toolbar using the tool button. When "Create Options button on
form" is selected, an equivalent "Options >> …" button is added to the bottom
of the form. For example:

Additional
options
always
enabled

By default, the tool button is only enabled when there is an active record
on the screen. When "Additional options always enabled" is selected, the

tool button is always enabled.
Create
function
buttons on
form

As the user navigates through a form, either the or tool button is
enabled if the current data element supports a "Find" or "Lookup" option.
When "Create function buttons on form" is selected, the appropriate tool
button is also added to the right of the data element on the generated form.

Do not scale
background
image

If a background image is selected, by default it is resized when the window is
resized. If "Do not scale background image" is specified, the image size is
fixed.

Barista Application Framework 51 Getting Started – Table of Contents

Disallow
new records

By default, if the user enters a key that is not on file, the system assumes that
the user is creating a new record. If "Disallow new records" is specified, new
records cannot be created; the system generates the following dialog:

Disallow
inquiry
changes

By default, views in the Inquiry System can be modified by a user. This option
specfies the table has a preset view that cannot be modified.

Disallow all
deletes This option disables the Record🡺Delete menu item and the tool button.

Call
Program Options Entry forms prompt the user to enter some parameters, then press [F5] or the tool

button to call or run an overlay program. For example, this Options Entry form prompts the user
for three values (first, second, third):

When the user presses [F5] or the tool button, control is passed to the specified overlay
program (either a Call Program or a Run Program). Here's a sample overlay program:

rem ' Overlay for Options Entry samples
rem ' If CALLed, share the workspace
if tcb(13) then enter
msg$="first = '"+Option!.getOptionData("first")+"'; "
msg$=msg$+"second = '"+Option!.getOptionData("second")+"'; "
msg$=msg$+"third = '"+Option!.getOptionData("third")+"'."
i=msgbox(msg$,64,"Option Data")
release

That overlay program produces the following dialog:

Run
Program

Barista Application Framework 52 Getting Started – Table of Contents

Tab
Definitions

If any tabs have been defined on this form, this brings up an editable list of tab labels, for
example:

Column Attributes
To view or edit data element column attributes, select an ALIAS.COLUMN item in the Columns panel.

Element Type Displays the Element Type for this Data Element. To view the Element Type details, right-click
on the data element in the form editor and select "Maintain Element Type".

Description Displayed from the Element Type record.
Window
Label

This is the label that will be used on a generated "Maintenance Form" or "Options Entry Form".

Column
Header

This is the column header that will be used on a generated "Maintenance Grid" or "Options
Entry Grid".

Data Type Displayed from the Element Type record.
Data Subtype

Barista Application Framework 53 Getting Started – Table of Contents

Control Type
Enable
Column

To selectively enable this control based on the value of another column, set "Enable Column" to
the column to be checked, and set "Enable Value" to the required value.

Enable Value
Check Box
Values

Displayed from the Element Type record.

[Ctrl] Left (X) For Maintenance Forms and Option Entry Forms, these values can be adjusted to fine-tune the
placement of a control on the form. The X, Width, and Height attributes are measured in pixels,
while the Y attribute is based on logical rows, with the default row height being 21 pixels.

The X and Y values can be specified as relative values (+n or -n). This format is interpreted as n
columns (X) or rows (Y) relative to the previous data element.

[Ctrl] Top (Y)
Fixed Width
Fixed Height

Data Key Displayed from the Element Type record.
Data Table
Data Column
Data Key
Name
Data Calc
Data
Compress
Data Expand
Default Value If a value is entered here, it will be used as the default (editable) value for this column. (See

also Preset Value.)
Drilldown Def To define a drilldown option for this column, select a drilldown code from the list.

Group
Heading

To insert a section heading, enter a title here. For example, entering a Group Heading of
"Commission Info" for the "Commission Rate" column would generate this form layout:

Barista Application Framework 54 Getting Started – Table of Contents

Help Tag ID Not yet implemented.
List Data For list-oriented controls, enter the list values here.

Descriptio
n

This is the value that the user will see on the
screen.

Code This is the value that will be stored on disk.
When defining a custom list, the place-holder entry must be deleted:

Min Length To enforce a minimum and/or maximum length for this column, enter the length value(s) here.
Max Length
Max Rows Displayed from the Element Type record.
Min Value To enforce a minimum and/or maximum value for this column, enter the value(s) here.
Max Value
Mask-Input Displayed from the Element Type record.
Mask-Output
Mask System To select a standard mask, enter a System ID and Mask Type code. This resolves to a mask

defined in Input/Display Masks:Mask Type

Barista Application Framework 55 Getting Started – Table of Contents

For masking rules, refer to Numeric Masking.
Optional Defs Click here to customize the behavior of this column. The available options are:

Hide data
in
maintenan
ce form

Omits this column from Maintenance Form and Options Entry Form programs.

Hide data
in
maintenan
ce grid

Omits this column from Maintenance Grids and Options Entry Grid programs.

Hide data
in inquiry
system

Omits this column from inquiry display.

Hide data
in all
forms

Omits this column from all forms.

Hide data
in Print All
option

Omits this column from the Print All output.

Hide data
in Print
Record
option

Omits this column from the Print Record output.

Hide
correspon
ding
control
label

Don't show the label for this column on generated Maintenance Form and
Options Entry Form programs.

Barista Application Framework 56 Getting Started – Table of Contents

Create
total for
inquiry
column

Adds a totals line to the bottom of the Inquiry screen showing the total for all
data elements that have this option selected. For example, this can be used to
show totals for the various sales figures and accounts receivable balances in
the customer table:

Display
descriptio
n in grid

When generating a Maintenance Grid program, this option causes the grid to
display the description that corresponds to this code value. This feature
assumes that table based validation rules are defined for the element type, for
example:

If this option is set for the state code column in the salespersons table, and the
table is defined to generate a Maintenance Grid, the resulting form looks like
this:

Save
contents
on
conditiona
l disable

If this column is conditionally enabled (see Enable Column and Enable Value
above), the default behavior is for the contents to be reset to the default value
when the column is disabled. If this option is selected, the contents are
retained when the column is disabled.

Barista Application Framework 57 Getting Started – Table of Contents

Period/yea
r entry
control

Used in Addon legacy code to specify if the Data Element should use the
Addon period/year parameter settings.

From/to
entry
control set

Used when defining from/to entries in an Options Entry Form. To use this
option, a single Data Element is defined in Table Maintenance with two
occurrences (Occ):

The "From/to entry control set" option tells Barista to create two controls
labeled "Beginning Value" and "Ending Value":

These controls implement special validation rules to ensure that the Ending
value is greater than or equal to the Beginning value. In this example, the Data
Element is named "RANGE". The overlay program sees the two values as
Option!.getOptionData("RANGE_1") and Option!.getOptionData("RANGE_2").

Note: The "Beginning" and "Ending" strings are taken from the barista.ini file;
they can be localized or adjusted based on personal preference:
FROM_TO_LABEL_BEG=Beginning
FROM_TO_LABEL_END=Ending

Null
entry=First
or Last

This option is used with a From/To entry control set based on a range of
values taken from a file. When this option is selected, Barista displays
descriptions of "First" and "Last" when the values are blank:

This doesn't have any effect on the values that are returned in
Option!.getOptionData(); it's assumed that the application will interpret the
blank values correctly.
Note: The "First" and "Last" strings are taken from the barista.ini file; they can
be localized or adjusted based on personal preference:
FROM_TO_DESC_FST=First
FROM_TO_DESC_LST=Last

Barista Application Framework 58 Getting Started – Table of Contents

Null
entry=All

This option is only meaningful for data elements that are based on a file
lookup. When this option is selected, Barista displays a default description of
"All" when the value is blank:

This doesn't have any effect on the value that is returned in
Option!.getOptionData(); it's assumed that the application will interpret the
blank value correctly.
Note: The "All" string is taken from the barista.ini file; it can be localized or
adjusted based on personal preference:
FROM_TO_DESC_ALL=All

Limit to
variable
naming
rules

Entry will be forced to uppercase. It must start with a letter and must contain
only letters, digits, and underscores.

Resize
control on
window
resize

On Maintenance Form and Options Entry Form programs, resize the control to
use all available space. This option is only valid for the last visible control on
the form.

Wildcard
data entry

Limits entry to the characters specified in the +WILDCARD_CHARS global
string. By default, this is:
ABCDEFGHIZKLMNOPQRSTUVWXYZ0123456789 ?

Validate
entries on
save only

The default is to validate entry as the user tabs out of the field. Select this
option to defer validation until the record is saved.

Control
contains
external
link

The entry field is a command or document to be handed over to the system

command processor. When this option is set, Barista adds a tool button
to the form after the control. When the user clicks that tool button, the text from
the control is passed to the system command processor.

Use last
valid entry
as default

For the duration of a program run, the system will use the most recent valid
entry as the default value for this column.

Do not
resolve
STBL
reference

Overrides the default behavior where Barista attempts to resolve any text
within [square brackets] as an STBL.

Display
only – all
cases

Sets this column to display-only.

Display
only – new
records
only

When creating a new record, sets this column to display-only.

Display
only –
existing
records
only

When editing an existing record, sets this column to display-only.

Value
must be
zero for
record
delete

Disallows delete on any records containing non-zero values in the specified
columns. Attempting to delete a record with a non-zero value in this column
generates a message like the following:

Barista Application Framework 59 Getting Started – Table of Contents

Password
entry
control

On Maintenance Form and Options Entry Form programs, this column is a
password entry field; each input character is echoed as '*'. (Note: This option
is only meaningful for Character Edit controls.)

Spell
check
control

Activates spellchecking for this control.

Zero
based
sequence
number
control

If this is a sequence number control, start counting at zero. By default,
sequence numbers start at one.

Assign
next
sequence
on null
entry

If this is a sequence number control, increment it on null entry.

Multiple
language
data
control

Not yet implemented.

Pad
Character

Displayed from the Element Type record.

Pad
Alignment
Precision
User Prompt The user prompt message is displayed in the status bar when the user enters this field.
Preset Value If a value is entered here, it will be used as the enforced (display-only) value for this column.

(See also Default Value.)
System
Dialog

Displayed from the Element Type record.

Tab Location If any tabs have been defined on this form, this dropdown list shows a list of available tabs;
select a tab to move this control, along with all subsequent controls, to it.

Barista Application Framework 60 Getting Started – Table of Contents

Form Editor
The Form Editor is the last panel in the Form Designer. It shows a preview of the form and implements various

editing features. To move a field, for example, select it and click on , , , or , or simply drag
and drop it to a new location.

Form Editor Options
Right-clicking in the Form Editor brings up the following options:

Create New Tab
To add a tab control to the form, or to add a new tab to the existing tab control, select a column, then select this
option and enter a tab heading.

Maintain Auxiliary Columns
To add columns from related tables to the form, select this option (also available via Design🡺Maintain Auxiliary
Columns) and select the required columns from the list. Auxiliary columns must come from a table having the
same key as the form's primary table.

Barista Application Framework 61 Getting Started – Table of Contents

Maintain Derived Data Elements
Derived data elements, as the name implies, are derived from other data elements. To add derived data elements
(sometimes called calculated fields), select this option (also available via Design🡺Maintain Derived Data
Elements). After entering the name of the derived data element, select an element type (which determines its
overall behavior), then enter an expression that describes how the element is derived. In the expression, other
columns in the table are referenced as [tablenamename.columnname].

Maintain Auxiliary Labels
To add text labels to the form, select this option (also available via Design🡺Maintain Auxiliary Labels) and enter
the label text.

Maintain Table
To edit the table for the form, select this option.

Edit Callpoints
To edit callpoint code, select this option. The Callpoint Editor can also be accessed using Design🡺Edit Callpoints,

the F2 key, or the tool button.

Barista Application Framework 62 Getting Started – Table of Contents

Clear Formatting Attributes
To remove various formatting attributes from the form, select Design🡺Clear Formatting Attributes from the menu
bar, select the attributes to be cleared, and press the Clear button.

Form Editor Control Options
Right-clicking on a GUI control in the Form Editor brings up the following options:

Create New Tab
To add a tab control to the form, or to add a new tab to the existing tab control, select this option and enter a tab
heading.

Create/Maintain Group Header
This option is an alternative way to edit the Group Heading attribute.

Barista Application Framework 63 Getting Started – Table of Contents

Optional Definitions
This option is an alternative way to edit the Optional Definitions attributes.

Lock Control Position
Locks the control to its current position and ignores relative formatting rules.

Maintain Element Type
To edit the element type information for the column, select this option.

Maintain Table
To edit the table for the form, select this option.

Edit Callpoints
To edit callpoint code (see below), select this option. The Callpoint Editor can also be accessed using

Design🡺Edit Callpoints, the F2 key, or the tool button.

Callpoints
The Barista runtime engine takes care of most standard entry, validation and read/write operations automatically.
Callpoints can be used to embed call custom code to perform non-standard operations.

During normal processing of entered data, the engine scans the alias attributes, looking for selected callpoint
triggers. If a trigger is encountered, the engine calls the specified callpoint routine with a predefined argument list.
The callpoint routine performs the necessary operations and returns control to the runtime engine.

Callpoints can also be used to prevent a certain process from occurring. For example, a "Before Record Delete"
callpoint can be used to determine if a record deletion is allowed. If the developer-defined callpoint code
determines that the deletion should be disallowed, it can pass back an “ABORT” status to the runtime engine.

Table Callpoint Codes (Mainline Processing)

Description
Proc
Code

Where
Triggered Uses

Allow
Abort?

Before Enable Map BENA Before creating the enable/disable controls
string.

Adding existing controls to
the idle controls string.

After Enable Map AENA After creating the enable/disable controls
string.

Enabling/disabling controls
outside of normal scope

After Form Callbacks ACAL After settings the event callbacks for all
controls on a form.

Adding aditional events

After Window
Creation

AWIN After issuing the 'WINDOW' mnemonic. Adding new button or entry
controls.

Before Window Show BSHO Just prior to showing the built initial screen. Adding manual controls or
objects.

After Window Show ASHO After completed window is issued a SHOW
command. All field arrays have been filled
with template data and all applicable fields
have been disabled.

Modifying FLD array
contents and adding new
buttons or fields.

Barista Application Framework 64 Getting Started – Table of Contents

Before New Record BREC Before the field arrays are cleared of data
from the previous record.

Manipulating FLD array
data and
enabling/disabling fields.

After New Record AREC After all arrays and controls have been set for
a new record.

Manipulating FLD array
data and
enabling/disabling fields.

After Grid Clear AGCL After the grid is cleared of all data. Special grid display or
totaling of entered data
within the grid.

Before Record Read BREA Prior to the attempted record read. Read key manipulation.
After Record Read AREA After a successful record read. Non-standard data

retrieval, dynamic field
manipulation and field
disabling.

After Key Build AKEY After building the key from the contents of the
rec$ array.

Manipulating the key.

After Record Array
Transfer

ARAR After transferring the read data (rd_file_rec$)
into record array (rd_rec_data$[]).

Non-standard data
retrieval and dynamic field
manipulation.

After Record Display ADIS After the record or setup has been initially
displayed.

Warning messages for
displayed records.

After Record Removal AREM After removal of deleted detail records during
save.

Removal of secondary file
information.

After Grid Display AGDS After all detail records are displayed in a grid. Special grid display or
totaling of entered data
within the grid.

Before Grid Entry BGRD Prior to first entry when focusing on a detail
grid.

Grid array manipulation.

Before Write Array BWAR Prior to transferring the contents of the
REC$[x] array into the record template
(FILE1$)

Modifying the contents of
REC$[x] prior to writing.

Before Record Write BWRI Prior to an attempted record write. Non-standard record
validation.

Yes

After Record Write AWRI After a successfully completed record write.
Bypassed on write errors.

Associated record
updating.

Before Detail Record
Save

BSAV Prior to saving a detail record into the detail
record array (DREC$[x])

Data manipulation Yes

Before Record
Removal

BREM Prior to removal of deleted detail records
during save.

Removal key
manipulation.

Yes

Table Callpoint Codes (Record Delete)

Description
Proc
Code

Where
Triggered Uses

Allow
Abort?

Before Record Delete
Query

BDEQ Prior to delete record prompt. Processing to ensure
delete is allowed.

Yes

Before Record Delete BDEL Prior to attempted record deletion. Delete key manipulation. Yes
After Record Delete ADEL After an attempted or successful record

deletion.
Cascading record deletion.

Table Callpoint Codes (Miscellaneous)

Description
Proc
Code

Where
Triggered Uses

Allow
Abort?

Before Next Record
Key

BNEK Prior to retrieving the key for the next record. Read position and key
manipulation. Tables with
mixed multiple record
types.

Before Next Record BNEX Prior to retrieving the next record. Read key manipulation.
Before Previous
Record Key

BPRK Prior to retrieving the key for the previous
record.

Read position and key
manipulation. Tables with

Barista Application Framework 65 Getting Started – Table of Contents

mixed multiple record
types.

Before Previous
Record

BPRI Prior to retrieving the previous record Read key manipulation.

Before File Overview BOVE Prior to calling the standard inquiry system for
a file overview.

Non-standard record prefix
manipulation.

Yes

After File Overview AOVE After calling the standard inquiry system for a
file overview.

Retrieved data
manipulation.

After Print All
Selected

APRA After selecting the “Print All” option from the
menu bar.

Specialized reports
formats. Note: If a custom
output program is called, a
status of “ABORT” must be
used stop Barista from
attempting to print its own
version.

Yes

After Print Record
Selected

APRT After selecting the “Print Record” option from
the menu bar.

Specialized reports
formats. Note: If a custom
output program is called, a
status of “ABORT” must be
used stop Barista from
attempting to print its own
version.

Yes

Before Record Copy BRCO Prior to the record copy setup. Current record
manipulation or copy
validation checking.

Yes

After Record Copy ARCO After a successful record copy. Copied record
manipulation.

After Grid Exit AGRD After a user tabs out of a detail grid. Extra grid validation or
totaling of entered data
within the grid.

Before Program Exit BEND Prior to exiting the program. All associated
windows for the program have already been
closed.

Erasing temporary files
and setting processing
flags.

Yes

After Window Resize ASIZ After receiving a window resize event. Resizing added tabs and
child windows.

Column/Field Callpoint Codes

Description
Proc
Code

Where
Triggered Uses

Allow
Abort?

After Field Input AINP After losing focus and performing base
validation (length/field type).

Non-standard field
validation.

After Field Inquiry AINQ After calling the standard inquiry system for a
field inquiry.

Retrieved data
manipulation.

After Control
Modification

AMOD After receiving a modified event for a
BBjSlider or BBjInputE/N/DSpinner,

Using the current modified
contents of a field for
subsequent data or
display manipulation.

After Field Validation AVAL After performing ALL defined validation. Using the validated
contents of a field for
subsequent data
manipulation.

Before Drill Down BDRL Prior to displaying drill down inquiry Filter manipulation. Yes
Before Field Input BINP When a specific control gains focus. Non-standard field

defaults.
Before Field Inquiry BINQ Prior to calling the standard inquiry system for

a field inquiry.
Non-standard record prefix
manipulation.

Yes

Barista Application Framework 66 Getting Started – Table of Contents

The Callpoint! Object
The developer can include any BBj code in a callpoint routine, but most callpoints will make use of the Callpoint!
object, which provides access to commonly used information. For a list of available methods, refer to Callpoint
Object Methods (CMTH), below.

Callpoint Editor
The Callpoint Editor is a text editor for entering BBj program code to be executed at a particular point during the

form execution. To use the Callpoint Editor, select Design🡺Edit Callpoints, press the F2 key, or click the tool
button. The Callpoint Editor includes:

● the ability to increase or decrease the indent level for a block of code using the and tool
buttons.

● search and replace options;
● a font selector to change the preferred display font; and
● a right-click menu for selecting common code blocks from a list.

The following sample callpoint code might be invoked in response to the user selecting a particular option using

the tool button:

Barista Application Framework 67 Getting Started – Table of Contents

Barista Application Framework 68 Getting Started – Table of Contents

Flow Diagrams
The following diagrams show where callpoint code is executed within the execution of a Barista form.

Form Maintenance Flow – Overview

Barista Application Framework 69 Getting Started – Table of Contents

Form Maintenance Flow – Create or Update Record

Barista Application Framework 70 Getting Started – Table of Contents

Form Maintenance Flow – Delete, Query, Next, Previous, First, Last

Barista Application Framework 71 Getting Started – Table of Contents

Form Maintenance Flow – Copy, Print, and Custom Options

Barista Application Framework 72 Getting Started – Table of Contents

Grid Maintenance Flow – Overview

Barista Application Framework 73 Getting Started – Table of Contents

Column Entry Flow Detail

Barista Application Framework 74 Getting Started – Table of Contents

Callpoint Code Fragments

For easy access to commonly used code fragments, click the tool button or right-click in the Callpoint Editor
to see the following list of callpoint code categories:

Callpoint Object Methods (CMTH)
Code Notes
=callpoint!.getRecordMode() Contains current record mode: (<A>dd mode, <C>hange mode)
=callpoint!.getRecordStatus() Set to 'M' if current record is modified
=callpoint!.getAlias() Alias triggering the callpoint.
=callpoint!.getType() Callpoint type being triggered: (<T>able, <C>olumn, <D>etail, <G>rid)
=callpoint!.getEvent() <alias_name>.<variable_name>.<event> triggering the callpoint
=callpoint!.getControlID() ID of the control triggering the callpoint
=callpoint!.getVariableName() <alias_name>.<variable_name> of the column triggering the callpoint
=callpoint!.getUserInput() User input data for the control triggering the callpoint
=callpoint!.getRecordKey() The primary key of the record triggering the callpoint
=callpoint!.getKeyPrefix() The primary key prefix of the the record triggering the callpoint
=callpoint!.getRecordTemplate() The template of the record triggering the callpoint
=callpoint!.getAbleMap() Contains the control enable/disable map
callpoint!.setAbleMap(<_>) Returns the control enable/disable map
callpoint!.setStatus(<_>) Sets return status: (Any combination of: <ABORT> process, <MODIFIED>,

<CLEAR> form, <REFRESH> display)
callpoint!.setMessage(<_>) Display indicated message when callpoint exits (<message id:token 1;token2>)

Barista Application Framework 75 Getting Started – Table of Contents

Column Variable Names (COLS)
A list of all data elements in the table, in the format ALIAS.DATA_ELEMENT. For example:

Get Column Data (GETC)
The code used to retrieve column data for a particular field, in the format:

callpoint!.getColumnData("fieldname")

For example:

Set Column Data (SETC)
The code used to update column data for a particular field, in the format:

callpoint!.setColumnData("fieldname",value)

Barista Application Framework 76 Getting Started – Table of Contents

For example:

Get Column Undo Data (GETU)
The code used to retrieve the original value of a particular field, in the format:

callpoint!.getColumnUndoData("fieldname")

For example:

Get Table Attributes (GTAV)
The code used to retrieve a table attribute, in the format:

callpoint!.getTableAttribute("code")

Barista Application Framework 77 Getting Started – Table of Contents

For example:

For a complete list of table attribute codes, see

Barista Application Framework 78 Getting Started – Table of Contents

Table Attribute Codes.

Set Table Attributes (STAV)
The code used to update a table attribute, in the format:

callpoint!.setTableAttribute("code","value")

For example:

For a complete list of table attribute codes, see

Barista Application Framework 79 Getting Started – Table of Contents

Table Attribute Codes.

Get Column Attributes (GCAV)
The code used to retrieve a column attribute, in the format:

callpoint!.getTableColumnAttribute("fieldname","code")

For example:

For a complete list of column attribute codes, see Column Attribute Codes.

Set Column Attributes (SCAV)
The code used to retrieve a column attribute, in the format:

callpoint!.getTableColumnAttribute("fieldname","code")

For example:

For a complete list of column attribute codes, see Column Attribute Codes.

Entered Arguments (ENTA)
Code Notes
bar_tpl$ Template defined and reserved by Barista
BarObj! Object defined and reserved by Barista
user_tpl$ User defined template. May be used to store data such as opened channel numbers, etc
UserObj! User defined object. May be used to store vectors, controls or other objects
gui_dev Variable specifying the opened sysgui channel
SysGUI! The SysGUI object retrieved from the BBjAPI()
Form! The alias form
rec_data$ String template containing the current record data

Barista Application Framework 80 Getting Started – Table of Contents

table_chans$[
]

Array containing all opened tables and the associated string templates

dtlg_param$[]
GridVect!
hrec_data$[]
System Variables (SVAR)
Code Notes
bar_tpl$ Template defined and reserved by Barista
user_tpl$ User defined template. May be used to store data such as opened channel numbers, etc
gui_dev Variable specifying the opened sysgui channel
rec_data$ String template containing the current record data
table_chans$[
]

Array containing all opened tables and the associated string templates

dtlg_param$[] Array containing information details for the Detail grid in a Header/Detail form.
dtlg_param$[1:#tabs+1,10]

Index Description Variable name
0 Table ID (table name) rd_dtlg_tbl

1 Tab ID (index) rd_dtlg_tab

2 File channel rd_dtlg_chn

3 File template rd_dtlg_tpl

4 Future use
5 Future use
6 Future use
7 Future use
8 Detail grid control ID rd_dtlg_ctlid

9 Detail grid header control ID rd_dtlg_hdr_ctlid

10 Detail grid window control ID rd_dtlg_parent_ctlid

System Objects (SOBJ)
Code Notes
BarObj! Object defined and reserved by Barista
UserObj! User defined object. May be used to store vectors, controls or other objects
SysGUI! The SysGUI object retrieved from the BBjAPI()
Form! The alias form
GridVect! A vector containing grid data vectors. getItem(0) contains a vector of all row data contained in

the detail grid.

Global String Values (STBL)
Variable Notes
+ADDATA Data location for Barista Administrator files
+BACKGROUND_CTL
+BLOCK_CTL Starting control number sequence for block controls
+BLOCK_TEXT_CTL Starting control number sequence for block text controls
+BUTTON_CTL Starting control number sequence for options button controls
+CHILD_WIN
+CUSTOM_CTL
+DATE_FORMAT
+DATE_GRID
+DATE_MASK
+DBNAME
+DDDATA Data location for Barista Data Dictionary files
+DIR_ADM Location of Barista administrative files

Barista Application Framework 81 Getting Started – Table of Contents

+DIR_BWU Location of Barista Web Utility files
+DIR_CFG
+DIR_CPT
+DIR_DAT
+DIR_DDB
+DIR_DEF Location of Barista definition files
+DIR_FRM Location of Barista files
+DIR_IMG Location of Barista image files
+DIR_PGM Location of programs files
+DIR_SYP Location of Barista programs files
+DIR_SYS Location of Barista system forms
+DIR_USR
+DIR_WRK Location of Barista work files
+DISPLAY_CTL Starting control number sequence for secondary data display controls
+DOC_DIR_CSV Document warehouse folder for Comma Separated Value text files (.csv)
+DOC_DIR_HTM Document warehouse folder for HTML text files (.htm)
+DOC_DIR_PDF Document warehouse folder for Portable Document File text files (.pdf)
+DOC_DIR_TXT Document warehouse folder for Tab Delimited text files (.txt)
+DOC_DIR_XML Document warehouse folder for XML text files (.xml)
+DOC_FONT_FIXED Default font name for non-proportional output in the Document Output Display
+DOC_FONT_PROP Default font name for proportional output in the Document Output Display
+DOC_FONT_SIZE Default font size for output in the Document Output Display
+ENTRY_CTL Starting control number sequence for entry controls
+FIELD_DELIM
+FILE_ADD Location of callpoint addins definition file
+FILE_CFG Location of Barista configuration file
+FILE_CPT Location of callpoint stub program
+FILE_HLP Location of help system
+FILE_MEN Location of menu system file
+FILE_SET Location of user window settings file
+FILE_TPM Location of data dictionary definition file
+FILE_USR
+GRID_CTL
+GRID_LIST_CTL
+GUI_DEVICE
+IMAGE
+IMAGE_CTL
+LANGUAGE_ID
+MASTER_USER
+MILESTONE Default milestone for updating progress meters
+PROGRESS_CTL
+STATUS_CTL
+STATUS_IND_CHAR Character used to indicate a 'checked' value in columnar displays
+TAB_CTL
+USER_ID The current user id
+TEXT_CTL Starting control number sequence for label controls
+WILDCARD_CHARS
+WINDOW_RES

Table Open Subroutines (TBLO)
Code Notes
num_files=1 Specified the number of table open

elements to create
dim open_tables$[1:num_files],open_opts$[1:num_files],
open_chans$[1:num_files],open_tpls$[1:num_files]

Dims the required table open elements

open_tables$[1]="<TABLE_ID>",open_opts$[1]="OTA" Assigns the table id and open
parameters

gosub open_tables Accesses the table open subroutine

Barista Application Framework 82 Getting Started – Table of Contents

<table_id>_chn=num(open_chans$[1]),<table_id>_tpl$=open_tpls$[1] Assigns the return open information to
local variables

Barista Application Framework 83 Getting Started – Table of Contents

Get Open Table Device (TDEV)
Returns the channel number of a selected internal control file. For example:

Get Open Table Template (TTPL)
Retrieves the template for a selected internal control file. For example:

Barista Application Framework 84 Getting Started – Table of Contents

Get Current Template (CTPL)
Retrieves the template for this table. For example:

File Includes (INCS)
Code Notes
#include
std_missing_params.src

Standard Barista routine for handling missing
parameters

#include std_function.src Standard Barista form functions
#include std_error.src Standard Barista error routine
#include std_exit.src Standard Barista routine for exiting programs

Barista Application Framework 85 Getting Started – Table of Contents

Menu Designer
The application menu system is the panel that usually appears on the left side of the MDI window. This is distinct
from the Barista menu bar, which appears at the top of the MDI window, above the tool bar. To make a Barista
form available to the end user, it must be added to the menu system. This is done in the Menu Designer, which is
accessed from the Menus option of Administration Maintenance:

Barista uses multiple menu files when compiling and displaying the application menu system. The Mounted Menu
Files form allows addition and deletion of these menu files. Note, the entry order of the menu files on this form
dictates the display sequence in the application menu.

To refresh the application menu display after maintaining the menu files, press [Refresh].
To maintain a mounted menu file, select it on the form and press [Maintain]:

Barista Application Framework 86 Getting Started – Table of Contents

The top level of the application menu system, Applications, is shown in the top of the panel. The menu system for
a given application is shown in the middle part of the panel. To add a new item to the menu system, either

right-click on an existing item, or select an existing item and click the tool button.

Add Application Menu
To add a new application, right-click on "Barista Application Framework" and select "Add Application Menu":

Option ID The Option ID is a unique reference, up to 20 characters, that identifies a menu system entry.
When defining a new Application Menu or Menu Group, just use the default ID (a 10-digit
number).

Description Enter a short name for the new application.
Image ID Select an image from the list. Barista comes with a standard set of images. To install additional

images, copy them to barista\sys\images\im_ftype_*.*.
Automatically
Expand Menu
Company ID
Product ID
Help ID

Add Submenu
To add an optional submenu, right-click on the newly added application menu and select "Add Submenu":

Option ID When defining a new Menu Group, just use the default ID (a 10-digit number).

Barista Application Framework 87 Getting Started – Table of Contents

Description Enter a short name for the submenu.
Automatically expand
menu

Check this to expand this submenu automatically whenever the application menu is
opened.

Company ID
Product ID

Add Menu Item
To add a menu item, right-click on the application menu or submenu and select "Add Menu Item":

Option ID The Option ID is a unique reference, up to 20 characters, that identifies a menu system entry.
This reference will appear in the Shortcuts and History lists, for example:

Option Type Select one of the following Option Types:
● Defined Alias=Barista Form
● BASIC Program=Standalone BBj Program
● Application Program=Barista-Aware BBj Program
● System Call=System-level command

Target If the Option Type is a program, enter the program name here.
If the Option Type is a system call, enter the system command here.

Description Enter a short name for the menu item.
Image ID Select an image from the list. Barista comes with a standard set of images; to install additional

menu images, copy them to barista\sys\images\im_mtype_*.*.
Company ID
Product ID
Help ID

Barista Application Framework 88 Getting Started – Table of Contents

Other Options
To move a menu item up or down in the list, select it and either press [Alt]+🠉 / [Alt]+🠋, or right-click on it and
select Move Up or Move Down from the popup menu.

To delete a menu item, select it and press [Ctrl]+[Delete], press the tool button, or right-click on it and select
Delete from the popup menu.

To update the menu system after making changes in the Menu Designer, either right-click or click on the
tool button and select Refresh Menu.

Barista Application Framework 89 Getting Started – Table of Contents

Reference
System Publics (SPUB)
These are called programs that perform commonly used functions within the Barista environment.

Code Notes
call stbl("+DIR_SYP")+"bam_inquiry.bbj",gui_dev,Form!,"<table_id>","VIEW",
table_chans$[all],"<key_prefix>","<key_id>","","","","",""

Calls the Barista
inquiry system for the
specified table and key
prefix

call stbl("+DIR_SYP")+"bam_run_prog.bbj","<table_id>",user_id$,"","",
table_chans$[all],"",dflt_data$[all]

Calls the Barista
runtime and launches
the form for the
specified table

Program Name Description Parameter List

bac_create_table.bbj
Create a work file
based on an existing
Barista table alias.

Parameter In Out
rd_table_alias$ Table alias, C(16),

uppercase.
Unchanged

rd_disk_file$ "" to use the file
name from the alias
record, or a fully
qualified filename.

File name.

rd_table_chans$[] This array always exists in the Barista
environment; pass it as given.

rd_create_action$ "ERASE" to erase
existing file if it
already exists,
otherwise ""

Unchanged.

rd_create_status$ "" Returns "" if
successful, otherwise
returns a
human-readable error
message.

bac_error.bbj
Report a program
error to the user. Parameter In Out

rd_err_prog
$

Program name Unchanged

rd_err_line$ Error line number Unchanged
rd_err_num
$

BBx error number
(ERR)

Unchanged

rd_err_text$ Error message,
typically passed as
ERRMES(-1)

Unchanged

rd_err_act$ N/A Returns the user's
chosen action:
"EXIT"
"RETRY"
"ESCAPE"

bac_key_template.bb
j

Get Template For
Selected Key. Parameter In Out

rd_table_id$ Table alias,
C(16),
uppercase.

Unchanged

Barista Application Framework 90 Getting Started – Table of Contents

rd_table_key$ Key name,
C(16),
uppercase.

Unchanged

rd_key_template
$

N/A Template that describes
the structure of this key.

rd_table_chans$[
]

This array always exists in the Barista
environment; pass it as given.

rd_status$ Returns "" if successful,
otherwise returns a
human-readable error
message.

bac_message.bbj
Display or Query
System Message. Parameter In Out

rd_msg_id$ Message ID defined in
Administration,
Maintenance, System
Messages.

Unchanged.

rd_msg_tokens$[
]

Single-dimension array
of replacement tokens,
to be inserted into the
message based on
place-holders %1, %2,
etc.
rd_msg_tokens$[1]
replaces %1,
rd_msg_tokens$[2]
replaces %2, and so
on.

Unchanged.

rd_msg_opt$ Pass "" to display a
dialog window for the
user, or "<<TEXT>>"
to retrieve the
message text without
displaying a dialog.

If "<<TEXT>>"
was passed
in, returns the
formatted
message,
otherwise
returns the
user's
selection.

rd_table_chans$[
]

This array always exists in the Barista
environment; pass it as given.

Note: Assumes the current language,
STBL("+LANGUAGE_ID"). These messages are maintained in
Administration, Maintenance, System Messages.

bas_sequences.bbj
Get Next Sequence
Number. Assign
defined sequence
numbers during
updates, reports, etc.

Parameter In Out
rd_sequence_id$ Sequence Number

ID defined in
Administration,
Maintenance,
Sequence Numbers.

Unchanged.

rd_sequence_no
$

N/A Next sequence
number.

rd_table_chans$[
]

This array always exists in the Barista
environment; pass it as given.

Sequence numbers are maintained in Administration,
Maintenance, Sequence Numbers.

bac_open_tables.bbj
Open/Create Tables

Parameter In Out
rd_open_beg Index of the first

element of
0

Barista Application Framework 91 Getting Started – Table of Contents

rd_open_tables$[]
to be processed,
or 0 to start at the
beginning.

rd_open_end Index of the last
element of
rd_open_tables$[]
to be processed,
or 0 to process
through the end.

0

rd_open_tables$[
]

Array of table
aliases.

If rd_open_opts$[i]
includes "A",
rd_open_tables$[i]
returns the disk file
name, otherwise
it's unchanged.

rd_open_opts$[] ● F=Find existing channel for file if
open

● A=Get actual disk file name based
on alias

● O=Open disk file
● N=Force open on new channel
● T=Retrieve template record
● L=Lock file
● C=Close file
● S=Skip error messages if file open

unsuccessful
● I=Initialize file
● D=Define file if not found

rd_open_chans$[
]

Pass an
empty array.

Each element returns
the channel number of
the corresponding file.

rd_open_tpls$[] Pass an
empty array.

Each element returns
the record template for
the corresponding file.

rd_table_chans$[
]

This array always exists in the Barista
environment; pass it as given.

rd_open_batch Unused
rd_open_status$ N/A. Returns "" for success,

or a human-readable
error message.

bac_winsize.bbj
Barista stores
persistent
information about
windows in the
[Windows] section of
.usr files in the
barista/settings/enu/
directory (assuming
the English – U.S.
language code). The
rdc_winsize utility
saves and reads that
information.
Developers can use
rdc_winsize to
manage persistent
information for their
custom-built
windows.

Parameter In Out
rd_win_key$ Unique Window ID. Unchanged.
rd_win_type$ "U" = User-defined

custom window, not
associated with a
Barista form.
"W" = Maintenance or
Options Entry Form.
"G" = Maintenance or
Options Entry Grid.
"I" = Inquiry Window.
The "W", "G", and "I"
codes are reserved
for internal Barista
use only.

Unchanged

rd_col_str$ Unused.
rdWindow! A BBjWindow object. Unchanged
rd_action$ "SAVE" or "READ"

Barista Application Framework 92 Getting Started – Table of Contents

http://www.basis.com/onlinedocs/documentation/gridctrl/bbjtoplevelwindow.htm

rd_win_coord[] N/A Returned as a
four-element
array of X, Y,
W, H.

bam_config.bbj
Read or write
configuration
information in the
barista .cfg, .ini, or
.usr files.

Parameter In Out
rd_cfg_file$ Fully-qualified

filename.
Unchanged.

rd_cfg_type$ "CFG"
"INI"
"USR"

Unchanged.

rd_cfg_proc$ "READ"
"WRITE"

Unchanged.

rd_attr_data$[] RD_ATTR_DATA$[0] is a string of
attribute names, each padded out to 20
bytes.
RD_ATTR_DATA$[1:n] contains the data
corresponding to each of the attribute
names listed in RD_ATTR_DATA$[0]

rd_convert_0a$ By default, rdm_config converts all
occurences of "$0A$" in rd_attr_data$[]
to $0A$. To disable this behavior, pass
rd_convert_0a$ as "NO".

bam_enable.bbj
Enable/Disable MDI
tool buttons, menu
items and controls on
forms.

Parameter In Out
rd_gui_dev This variable always exists in the Barista

environment; pass it as given.
rd_able_proc$ ● "CREATE"=Create rd_able_map$ of

all controls listed in rd_able_ctls$
(See below)

● "ENABLE"=Enable all controls listed
in rd_able_ctls$ (See below)

● "DISABLE" =Disable all controls
listed in rd_able_ctls$ (See below)

● "CHECK"=Check menu controls
listed in rd_able_ctls$ (See below)

● "UNCHECK" =Uncheck menu
controls listed in rd_able_ctls$ (See
below)

● "ACTIVE" =Set status to active for all
controls listed in rd_able_ctls$ (See
below)

● "UPDATE" =Update status of all
controls based on current values in
rd_able_map$ (See below)

rd_disp_mode$ ● "INIT"=Initializes any previous
rd_able_map$ string and settings."

● "CLEAR"=Clear control contents
when enabling or disabling.

● "FORCE"=Override current
rd_able_map$ status and perform
function specified in rd_able_proc$

● "MDI"=Specifies the program is
running within the Barista Framework
MDI. (Mandatory)

● "IDLE"=When used in conjunction
with rd_able_proc$=

● "CREATE"=Sets all controls to idle
(always disabled)

Barista Application Framework 93 Getting Started – Table of Contents

rd_able_ctls$ Variable length
string consisting of:
Control number
(00000)

Control type:
B = Button
M = Menu
E = Entry control

Semi-colon
delimited.

Used in conjunction
with rd_able_proc$
commands to
manipulate various
commands.

Unchanged

rd_able_map$ Variable length
string containing
the current
enable/disable
status of all controls
on the user
interface, including
menu and toolbar
items Consists of:
Control number
(00000)

Control type:
B = Button
M = Menu
E = Entry control

Current control
enable/disable
status:
‘’ = Enabled
D = Disabled
I/X = Always
disabled.

Semi-colon
delimited.

Current control
enable/disable
status is updated.

rd_able_ctx$ Variable length
string defining the
context for each
control on a form,
and consisting of:
Control number
(00000)

Control type:
B = Button
M = Menu
E = Entry control

“-“ (Dash)

Window context of
control (0000).

Unchanged

Barista Application Framework 94 Getting Started – Table of Contents

Semi-colon
delimited.

rd_able_ctx Context of controls
on a form if the
form consists of
one context

Unchanged

rdSysGUI! This variable always exists in the Barista
environment; pass it as given.

rd_rec_data$[] Internal Barista use
only

Unchanged

rd_ctl_xref_str$ Internal Barista use
only

Unchanged

rd_attr_def_tbl$[] Table Attribute
Definition Array.
(See Barista Data
Structures)

Unchanged

rd_attr_def_col$[
]

Column Attribute
Definition Array.
(See Barista Data
Structures)

Unchanged

rd_attr_tbl$[] Table Attribute
Array. (See Barista
Data Structures)

Unchanged

rd_attr_col$[] Column Attribute
Array. (See Barista
Data Structures)

Unchanged

bam_enable_pop.bbj
Enable/Disable
Popup Menu Items Parameter In Out

Form! This standard Barista variable identifies
the current form.

rd_enable_str$ List of popup menu
items to enable.

Unchanged.

rd_disable_str$ List of popup menu
items to disable.

Unchanged.

bam_grid_init.bbj
Initialize and
configure a
custom-created
BBjGrid control.

Parameter In Out Notes
rd_gui_dev This variable always exists in the Barista

environment; pass it as given.
rdGridTemp! A

custom-define
d BBjGrid
control.

Unchanged
.

This grid
control
is
created
using
custom
BBj
code.

rd_flags$ One or more of the following:
● AUTO=Enable auto-sort.
● CALENDAR=
● CELL=Clicking in the grid selects a

individual cell, as opposed to the
complete row.

● CHECKS=Signifies the grid contains
checkboxes in one or more columns.

● COLH=Add column headers at the
top.

Barista Application Framework 95 Getting Started – Table of Contents

http://www.basis.com/onlinedocs/documentation/gridctrl2/bbjgrid_basic_methods.htm

● DATES= Signifies the grid contains
dates in one or more columns.

● DOCV=Internal Barista code used for
Document Output System.

● DRAG=Enable drag-and-drop.
● EDIT=Editable.
● HIGHO=Selects outline highlighting,

as opposed to color.
● ICONS=Internal Barista code used

for Framework Menu System.
● LIGHT=Lightens the color of

horizontal and vertical grid line per
Barista standards.

● LINES=Show horizontal and vertical
grid lines.

● MULTI=Enable multi-cell selection.
● NOSCROLL=Suppress scrollbars.
● NOSIZE=Disallow resizing.
● PROP=Formats grid to Barista

property sheet standards.
● ROWH=Add row headers on the left

edge.
● SIZEC=Auto-resize last column.
● SORT=Make the columns sortable.
● TIGHT=Reduce the row height.
● VBOTTOM=Set vertical alignment to

bottom.
● VCENTER=Set vertical alignment to

center.
● VTOP=Set vertical alignment to top.

rd_num_rows Number of rows. Unchanged
rd_attr_def_col$[
]

Column Attribute
Definition Array. (See
Barista Data
Structures)

Unchanged

rd_inq_disp_col$ Variable length string
defining which
column ids are
initially displayed.
Each segment
contains
<table_id.column_id>
and is padded to 40
bytes.

Unchanged

rd_attr_col$[] Column Attribute
Array. (See Barista
Data Structures)

Unchanged

rdListVect! Unused.

bam_inquiry.bbj
File Inquiry System

Parameter In Out
rd_gui_dev This variable always exists in the

Barista environment; pass it as given.
Form! This standard

Barista variable
identifies the current
form.

Unchanged

rd_alias_id$ Table alias to query. Unchanged
rd_inq_mode$ ● "DRILL"=Places inquiry into

drilldown mode (future)

Barista Application Framework 96 Getting Started – Table of Contents

● "MULTI"=Allows selection of multiple
rows

● "VIEW"=View only. Does not allow
selections.

● "ALL"=Overrides hide/show status
and displays all columns.

rd_table_chans$[] This array always exists in the Barista
environment; pass it as given.

rd_key_pfx$ Key prefix. Unchanged
rd_key_id$ Key name. Unchanged
rd_selected_key$ Start value. User-selected

value.
rd_filter_defs$[] Unused

bam_prog_bar.bbj
Display standard
Barista progress
meter during
long-running
processes (updates
or reports)

Parameter In Out
rdSysGUI! This variable always exists in the

Barista environment; pass it as given.
rdBaseWin! Identifies the

calling form.
Unchanged

rdBarWin! Identifies the
progress form.

rd_meter_title$ Progress Bar Title Unchanged
rd_total_recs Total number of

records.
Unchanged

rd_proc_recs Current number of
records.

Unchanged

rd_curr_data$ The text to display
if “TXT” is specified
in rd_action$
(below)

Unchanged

rd_action$ One or more of the following:
● "WIN"=Display progress bar window.
● "MTR"=Display progress bar on

window.
● "TXT"=Display text specified in

rd_curr_data$ (above)
● "LST"=Display list box on progress

bar window.
● "LSR"=Display contents of list box in

reverse order. (last item first.)
● "END"=End of job. Close progress

bar.
● "OK"=Add end of job “OK” button.

Barista Application Framework 97 Getting Started – Table of Contents

Barista Data Structures
When launching a Barista defined form, grid or inquiry, all information about a form (controls, entry and validation
rules, etc.) is internally stored and referenced by a predefined set of "Attribute Codes". The two categories of
attributes are listed below (see Table Attribute Codes & Column Attribute Codes).

During normal processing, these attributes are invisible to the end user. When in Callpoints, these attributes are
available via the callpoint! object. Developers, however, may wish to access, and in some cases create selected
attributes when calling selected Barista publics from within custom standalone programs.

The first set of arrays needed are the Attribute Definition Arrays. These arrays contain information about the
purpose of the attributes and are required to access and manipulate the Table Attribute Codes & Column Attribute
Codes. The Attribute Definition Arrays, one for the table attributes (_tbl$[]), and one for the column attributes (
_col$[]), are created with a call to the Attribute Definition public:

call "bam_attr_init.bbj",attr_def_tbl$[all],attr_def_col$[all]

Both arrays have the same format:
[0,0] – Contains a “;” delimited string of all attribute codes (“ALID;CPGM;CPRO;… “)
[<attribute_no>,0] – Contains the attribute information definition string:

+---(01,04) - Attribute Code
| +--(06,20) - Attribute Description
| | +---------------------(27,01) - Data Type
| | | C - Character
| | | N - Numeric
| | | +-------------------(29) – Internal Barista Information
| | | |
AAAA-BBBBBBBBBBBBBBBBBBBB-C-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

It is important to note the Attribute Definition Arrays arrays are intended to be read-only and should not be
modified at any time.

The second set of arrays needed are the Attribute Arrays. These arrays contain the attribute value information
needed by Barista to process the desired objects. The Attribute Arrays, one for the table attributes (attr_tbl$[]),
and one for the column attributes (attr_col$[]), are normally maintained by Barista, but can be created manually.

attr_tbl$[]
[0] – Contains a “;” delimited string of all table attribute codes (“ALID;CPGM;CPRO;… “)
[<attribute_no>] – Contains the corresponding table attribute value.

attr_col$[]
[0,0] – Contains a “;” delimited string of all column attribute codes (“DVAR;DTAL;CSEQ;VTYP;… “)
[0,1] – Contains a “;” delimited string of 40 byte padded segments, each containing <table.column>.
[<table.column>,<attribute_no>] – Contains the attribute value for the column.

Barista Application Framework 98 Getting Started – Table of Contents

The following example shows how to use column attributes to create a Barista look and feel grid on a custom
window.

Rem Custom Grid

rem --- Open GUI device and retrieve the SysGUI object
gui_dev=unt
open(gui_dev)"X0"
SysGUI!=bbjAPI().getSysGui()

rem --- Create Window & Grid Control Shell
Window!=SysGui!.addWindow(20,20,350,400,"Custom Grid Sample")
SampleGrid!=Window!.addGrid(101,5,5,340,390)

rem --- Retrieve the Attribute Definition Arrays
call stbl("+DIR_SYP")+"bam_attr_init.bbj",attr_def_tbl$[all],attr_def_col$[all]

rem --- Define 2 Column Grid Using Attributes
dim attr_col$[2,len(attr_def_col$[0,0])/5];rem Barista Column Attribute Array
attr_col$[1,(pos("DVAR"=attr_def_col$[0,0])+4)/5]="COL_1";rem Sets first column variable name to COL_
1
attr_col$[1,(pos("LABS"=attr_def_col$[0,0])+4)/5]="Column One";rem Sets first column header text
attr_col$[1,(pos("CTLW"=attr_def_col$[0,0])+4)/5]="160";rem Sets first column width
attr_col$[2,(pos("DVAR"=attr_def_col$[0,0])+4)/5]="COL_2";rem Sets second column variable name to COL
_2
attr_col$[2,(pos("LABS"=attr_def_col$[0,0])+4)/5]="Column 2";rem Sets second column header text
attr_col$[2,(pos("CTLW"=attr_def_col$[0,0])+4)/5]="160";rem Sets second column width
attr_col$[0,1]=pad("GRID_SAMPLE.COL_1",40)+pad("GRID_SAMPLE.COL_2",40);rem String of defined columns
variables
attr_disp_col$=attr_col$[0,1]

rem --- Call Barista Grid Initialization Public
call stbl("+DIR_SYP")+"bam_grid_init.bbj",gui_dev,SampleGrid!,"COLH-MULTI-AUTO-LINES-LIGHT",20,attr_d
ef_col$[all],attr_disp_col$,attr_col$[all]

Window!.setVisible(1)

event_ctl:rem --- Event Control
Window!.setCallback(Window!.ON_CLOSE,"exit_prog")
process_events,err=*same

exit_prog:rem --- Exit Program
release

Barista Application Framework 99 Getting Started – Table of Contents

Table Attribute Codes
ID Attribute Name C/N R/W Notes
ALID Table Alias C(16) R Data dictionary table alias.
CPGM Callpoint Program C(60) R Callpoint program to run for selected processes.
CPRO Callpoint Process C(20) R Semicolon-delimited list of callpoint processes that trigger the

callpoint program (e.g.: "AOPT;AREA;AREC;BDEQ;BSHO;").
● BENA=Before Enable Map
● BDEL=Before Record Delete
● BDEQ=Before Delete Query
● BEND=Before Table Exit
● BGRS=Before Grid Display
● BGRD=Before Grid Entry
● BNEK=Before Next Record Key
● BNEX=Before Next Record
● BOVE=Before Table Overview
● BPRI=Before Previous Record
● BPRK=Before Prev Record Key
● BRCO=Before Record Copy
● BREA=Before Record Read
● BREC=Before New Record
● BREM=Before Record Removal
● BSAV=Before Detail Save
● BSHO=Before Window Show
● BWAR=Before Write Array
● BWRI=Before Record Write
● AENA=After Enable Map
● AFMC=After Form Creation
● ACAL=After Form Callbacks
● ACUS=After Custom Event
● AOPT=After Option Select
● APRA=After Print All Select
● APRT=After Print Rec Select
● ADEQ=After Delete Query
● ADEL=After Record Delete
● ADIS=After Record Display
● AGCL=After Grid Clear
● AGDS=After Grid Display
● AGRD=After Grid Exit
● AKEY=After Key Build
● AOVE=After Table Overview
● ARAR=After Array Transfer
● AREA=After Record Read
● ARNF=After Record Not Found
● AREC=After New Record
● ARCO=After Record Copy
● AREM=After Record Removal
● ASIZ=After Window Resize
● ASHO=After Window Show
● AWIN=After Window Create
● ASVA=After Save Validation
● AWRI=After Record Write

AOPT Add Options C(10) R Additional option definitions, specified as any number of
35-character semicolon-delimited segments in the following
format:
● Option description (30)
● Option ID (4)
● Option location

o M=Option menu
o F=Form
o B=Both

DESC Description C(30) R Alias description

Barista Application Framework 100 Getting Started – Table of Contents

WINT Window Title C(40) R Window title bar description
DTLG Dtl Grid Table C(16) R Detail table to place on the main form
DTLW Dtl Window Tables C(16) R Semicolon-delimited list of detail tables to access as separate

windows. (e.g.: "DDM_ELEMENT_CMTS;DDM_ELEMENT_LDAT;")
DTLD Del Cascade Tables C(16) R Semicolon-delimited list of detail tables to include in the

cascading delete.
DTLX Del Depend Tables C(16) R Semicolon-delimited list of detail table records checked to

prevent deletion of current record.
DKNM Data Key Name C(16) R Key name to use for maintenance display
ATAB Parent Alias C(16) R Parent data definition table
PTAB Primary Table C(16) R Subset of which primary table
FTYP Form Type C(1) R Type of interface form to generate:

● X=No Form Used
● T=Maintenance Form
● G=Maintenance Grid
● S=Options Entry Form
● R=Options Entry Grid

FIMG Background Image C(64) R Background image to display on the form
HELP Help Tag ID C(10) R Help tag linking to system help
IDEF Inquiry Options C(16) R Defines multiple table inquiries and sorts
IKEY Inquiry Restrict? C(1) R Restricts inquiry sorts to columns with indexes defined in

Table Key Definitions
● Y=Yes
● N=No

NOTE Note Table C(16) R Note table for records
OPTS Optional Defs C(1) R Semicolon-delimited list of table definition options.

● S=Auto save records on exit
● V=Redisplay record on save
● G=Update all grid records on save
● X=Destroy window on run
● Q=Launch inquiry on run
● F=Close after call program
● X=Destroy window on run
● Q=Launch inquiry on run
● F=Close after call program
● P=Allow Print record option
● A=Allow Print all records option
● O=Create 'Options' button on form
● W=Additional options always enabled
● U=Create function buttons on form
● 1=Do not scale background image
● B=Disallow new records
● I=Disallow inquiry changes
● D=Disallow all deletes
● L=Disallow dependent delete
● Z=Disallow window resize
● L=Use scrollbars on window resize
● N=Bypass new record prompt

PCAL Call Program C(60) R Exit call program
PRUN Run Program C(60) R Exit run program
TABG Tab Definitions C(60) R Semicolon-delimited list of tabs on the main form.

Barista Application Framework 101 Getting Started – Table of Contents

Column Attribute Codes
ID Attribute Name Forma

t
R/W Notes

DVAR Data Name C(16) R Database variable. Maintained by Barista.
DTAL Source Alias C(16) R Database alias. Maintained by Barista.
CSEQ Column Seq C(3) R Column sequence. Maintained by Barista.
VTYP Variable Type C(1) R Variable Type. Maintained by Barista.

● C = Defined Column
● A = Auxiliary Column
● L = Auxiliary Label
● D = Derived Data Element

CTLI GUI Control ID C(5) R GUI control id. Maintained by Barista.
CTLN GUI Control Name C(16) R GUI Control Name. Maintained by Barista.
CTLC GUI Control Context C(5) R GUI control context. Maintained by Barista.
DCHN Data Table Channel C(5) R Opened channel for DTAB. Maintained by Barista.
TIND Tab Order Idx C(3) R Tab order index of an entry object on its parent form.
RKEY Primary Key? C(1) R Included in primary key definition.

● Y=Yes
● N=No

CPGM Callpoint Program C(60) R Callpoint program to run for selected processes.
CPRO Callpoint Process C(20) R Semicolon-delimited string of process codes that trigger the

callpoint program (e.g.: "BINP;AVAL;").
● BINP=Before Column Input
● BINQ=Before Column Inquiry
● AINP=After Column Input
● AINQ=After Column Inquiry
● AVAL=After Column Validation
● AVEC=After Grid Vector Update

BTNS Form Buttons C(5) R Form function buttons. Maintained by Barista. May contain
one or more of the following:
● F=Find
● D=Drilldown
● C=Calendar
● L=Document Link

ETYP Element Type C(16) R Element Type. Maintained by Barista
DESC Description C(30) R Column description
LABL Window Label C(30) R Control label text to display on form
LABS Column Header C(20) R Column header to display on reports and grid style forms
DTYP Data Type C(1) R Data type

● C=Character
● N=Numeric
● I=Integer
● U=Unsigned Integer
● B=Business Math
● O=BLOB

STYP Data SubType C(1) R Subtype definition for data types
● 1=Date (YYYYMMDD)
● 2=Date (YYYYMM)
● 3=Date (YYYY)
● 4=Date (YYMMDD)
● 5=Date (MMDD)
● 6=Created Date Stamp
● 7=Revised Date Stamp
● 8=Created Time Stamp
● 9=Revised Time Stamp
● A=Time (HHMMSS)
● B=Time (HHMM)
● C=Time (MMSS)
● S=Sequence Counter

Barista Application Framework 102 Getting Started – Table of Contents

● I=Image Path
CTYP Control Type C(1) R Type of control to display on the form

E=CharacterEdit (InputE)
e=CharacterSpinner (InputESpinner)
N=NumericEdit (InputN)
n=NumericSpinner (InputNSpinner)
D=DateEdit (InputD)
d=DateSpinner (InputDSpinner)
U=MultiLineEdit (CEDIT)
C=CheckBox
L=ListButton
O=ListBox
I = Spinner
R = RadioButtons
H=None (Hidden)
X=None (Ref Only)

ABLC Enable Column C(40) R Enable/disable column. Specifies the <table.column_id>
containing the data to use when calculating if the current
column should be enabled or disabled. Value is specified in
“ABLV”

ABLV Enable Value C(30) R Value trigger to enable/disable column. May contain one or
more semi-colon delimited values to search when testing if
current column should be disabled.

CDAT Check Box Values C(20) R CheckBox on/off value definition in the format "checked
value;unchecked value" (e.g.: "Y;N").

CTLX [Ctrl] Left (X) N(4) R Entry control left edge fixed location (in pixels)
CTLY [Ctrl] Top (Y) N(4) R Entry control top edge fixed location (in rows)
CTLW Fixed Width N(4) R Entry control fixed width (in pixels)
CTLH Fixed Height N(4) R Entry control fixed height (in pixels)
DKEY Data Key C(40) R Special validation key for non standard record find
DTAB Data Table C(16) R Validation/display table
DCOL Data Column C(16) R Validation/display column
DKNM Data Key Name C(16) R Key name to use for validation
CALC Data Calc C(99) R Display data calculation. Calculation expression is defined in

Form Manager 🡪 Form Designer 🡪 Derived Data Elements.
DCO
M

Data Compress C(12) R Data compression formula record ID.

DEXP Data Expand C(12) R Data expansion formula record ID.
DFLT Default Value C(80) R/W Default column value
DRLE Drilldown Def C(16) R Drill down definition ID
GHDR Group Heading C(30) R Header text for control entry group
HELP Help Tag ID C(10) R Help tag linking to system help
LDAT List Data C(10) R Semicolon-delimited list of values to display in a list control,

specified in the format:
● List item description (30)
● “~”
● List item ID (4)
e.g.:
Product Level ~P ;
Item Level ~I ;
No Sales Analysis ~N ;

MINL Min Length N(3) R/W Minimum data input length
MAXL Max Length N(3) R/W Maximum data input length
MAXR Max Rows N(2) R Maximum number of rows for entry
MINV Min Value C(20) R/W Minimum data entry value
MAXV Max Value C(20) R/W Maximum data entry value
MSKI Input Mask C(20) R Mask used during data entry
MSKO Output Mask C(20) R Mask used during data display
MSKS Mask System C(3) R System ID for defined mask
MSKT Mask Type C(2) R Mask type to use from system record

Barista Application Framework 103 Getting Started – Table of Contents

OPTS Optional Defs C(1) R Semicolon-delimited list of column definition options taken
from the following list (e.g.: "I;N;O;U;").
● W=Hide data in maintenance form
● G=Hide data in maintenance grid
● I=Hide data in inquiry system
● O=Hide data in all forms
● P=Hide data in 'Print All' option
● R=Hide data in 'Print Record' option
● L=Hide corresponding control label
● +=Create total for inquiry column
● V=Display description in grid
● E=Save contents on conditional disable
● Y=Period/year entry control
● 1=From/to entry control set
● 2=Null entry='First' or 'Last'
● 3=Null entry='All'
● T=Limit to variable naming rules
● X=Resize control on window resize
● ?=Wildcard data entry
● S=Validate entries on save only
● N=Control contains external link
● D=Use last valid entry as default
● F=Do not resolve STBL reference
● U=Grid entry value must be unique
● C=Display only-all cases
● A=Display only-new records only
● B=Display only-existing records only
● Z=Value must be zero for record delete
● p=Password entry control
● s=Spellcheck control
● 0=Zero based sequence number control
● #=Assign next sequence on null entry
● M=Multiple language data control

PADC Pad Character C(2) R Pad character.
● 20=Space
● 22=Quote
● 23=Pound (#)
● 2A=Asterisk (*)
● 2E=Period (.)
● 30=Zero (0)
● 5E=Caret (^)
● 5F=Underscore (_)

PADJ Pad Alignment C(1) R Entry data alignment
● L=Left
● R=Right

PREC Precision N (1) R Numeric precision
PROM User Prompt C(80) R/W User help text to display on status bar
PVAL Preset Value C(30) R Preset (locked) value
SDLG System Dialog C(1) R System dialog allowed for inquiry

● O=File Open
● S=File Save
● P=Printer

TABG Tab Location C(1) R Tab location for this and subsequent controls
Format: Numeric tab number.

Barista Application Framework 104 Getting Started – Table of Contents

Process Status

rem ' Update process status

if tcb(13) then enter

id$ = Option!.getOptionData("process_id")
task$ = Option!.getOptionData("description")
n = num(Option!.getOptionData("iterations"))
ms = num(Option!.getOptionData("milliseconds"))

Progress! = bbjapi().getGroupNamespace()
Progress!.setValue("+process_task",id$+"^C^"+task$+"^CNC^"+str(n)+"^")

for i=1 to n
wait ms/1000
Progress!.setValue("+process_task",id$+"^U^"+str(i)+"^")

next i

Progress!.setValue("+process_task",id$+"^D^")

release

Barista Application Framework 105 Getting Started – Table of Contents

Toolbar Reference

Tool
Button

Menu
Equivalent

Keyboard
Equivalent Notes

Record
New/Clear

[Ctrl]+N

Record
Add New

[Ctrl]+A

Record
Insert New

[Ctrl]+[Shift]+
A

Record
Delete

[Ctrl]+[Delete] Delete current record.

Record
Save

[Ctrl]+S Save current record.

Record
Refresh Data

[Alt]+[F5] Reload record.

Record
Execute Process

[F5] Run process.

File
Print Current Record

[Ctrl]+P Print current record.

Record
First Record

First record.

Record
Previous Record

[Page Up] Previous record.

Record
Next Record

[Page Down] Next record.

Record
Last Record

Last record.

View
Record Query

[Ctrl]+Q Record query.

View
Find

[Ctrl]+F Find field records.

Record
Display Master Record

[Ctrl]+R Display master record.

Record
Expand Grid Record

[Ctrl]+E Expand grid record.

View
Calendar

[Ctrl]+L Display calendar.

View
Launch Link

Launch link.

View
Drilldown

[Ctrl]+D Drilldown.

Record
Record Notes

Record notes.

Design
Form Manager

[F8] Form manager

Design
Form Designer

Form Designer

Design
Build Object

[Ctrl]+B Build object.

Design
Edit Callpoints

[F2] Edit callpoints.

Barista Application Framework 106 Getting Started – Table of Contents

Design
Edit External Program

Edit call/run program

Design
Increase Indent

[Alt]+ 🠊

Design
Decrease Indent

[Alt]+ 🠈

Design
Move To Top of Tab Order

[Ctrl]+[Home]

Design
Move Up One in Tab Order

[Home]

Design
Move Down One in Tab Order

[End]

Design
Move To Bottom of Tab Order

[Ctrl]+[End]

Record
Display Additional Options

[Ctrl]+O

Barista Application Framework 107 Getting Started – Table of Contents

Status Bar Reference
Se
g

Cod
e

Description

0 Help message for the current field.
1 REQ Displayed if the current field is required.
2 MOD Displayed if the current record has been modified since the last save.
3 INQ Displayed if the current field has an inquiry function.
4 EXP Displayed if the current field has an expand function.
5 LNK Displayed if the current field is an external link, such as an image file or a Microsoft Office

document.
6 CAL Displayed if the current field has a calendar option.
7 DRL Displayed if the current field has a drilldown function.
8 HDR

DTL
Indicates which panel (header or detail) is active. To toggle between header and detail, press F7 or
select Edit🡺Toggle Panel from the menu.

9 EDT When in a header/detail maintenance form, indicates that the detail grid is in edit mode.
10 The default printer, set in File🡺Processing Settings.
11 The current processing date. Defaults to the system date; can be changed in File🡺Processing

Settings.
12 The product version number, from [+VERSION_ID].
13 When in the Form Designer, reports the number of tables defined in the data dictionary.
14 When in the Form Designer, reports the number of tables defined in the data dictionary that have

been built.
15 COL

ATT
FRM

When in the Form Designer, indicates the active panel (Columns, Attributes, or Form Editor).

16 When in the Form Designer, indicates the calculated x coordinate (column) of the selected control.
The column is calculated as the number of x pixels divided by the basis_rde.ini COL_WIDTH
value, which defaults to 10 pixels.

17 When in the Form Designer, indicates the calculated y coordinate (row) of the selected control. The
row is calculated as the number of y pixels divided by the basis_rde.ini ROW_HEIGHT value,
which defaults to 21 pixels.

18 When in the Callpoint Editor, shows the current column and row (col:row)

Barista Application Framework 108 Getting Started – Table of Contents

Mask Reference

Numeric Masking
Cha
r

Description

0 A zero is always replaced by a digit (0..9).
The pound sign is used to suppress leading zeroes. It is replaced by the fill character for leading zeroes to

the left of the decimal point. For trailing zeros to the right of the decimal point it is replaced by a space or a
zero. Any other time it is replaced by a digit. See SETOPTS byte 4, bit 04 for more information.

, To the left of the decimal point, the comma is replaced by the fill character if no digits have yet been
placed. Any other time, it results in a comma.

- The minus sign creates a "-" in the result if the number is negative; otherwise, it is replaced by the fill
character.

+ The plus sign becomes a "+" in the result if the number is positive, or a "-" if the number is negative.
$ The dollar sign always results in a dollar sign.
(A left parenthesis results in a "(" if the number is negative, or the fill character if positive.
) A right parenthesis results in a ")" if the number is negative, or the fill character if positive.
CR The characters "CR" are inserted into the number if the number is negative. Two spaces are inserted if the

number is positive.
DR The characters "CR" are inserted into the number if the number is negative. The characters "DR" are

inserted if the number is positive.
* The asterisk ("*") is inserted into the number.
. The decimal point is replaced by a decimal point if any digits appear in the output mask. Otherwise, it is

replaced by the fill character. After the decimal point, the fill character becomes a space.
B The uppercase "B" always becomes a space. Any other character is simply copied to the result.
@ The @ sign is replaced by the three-character international currency code, based on the current value of

STBL("!LOCALE").
& The & sign is replaced by the local currency symbol, based on the current value of STBL("!LOCALE").

Some of the above characters can float within the mask. These are "-", "+", "$", "@", "&" and "(". If any of these
characters is present in the mask, the first one encountered will be moved to the last position where a "#" or ","
was replaced by the fill character. If no such position exists, the float character is left where it is.

String Masking
Cha
r

Accepts

X Any printable character.
a Any alphabetic character.
A Any alphabetic character. Converts lower-case alphabetic characters to uppercase.
0 Any digit.
U Any digit, alphabetic, space, or punctuation character. Converts lower-case alphabetic characters to

uppercase.
z Any digit or alphabetic character.
Z Any digit or alphabetic character. Converts lower-case alphabetic characters to uppercase.

Barista Application Framework 109 Getting Started – Table of Contents

http://www.basis.com/onlinedocs/documentation/commands2/setopts_verb.htm

