
Barista Language Utilities

Barista Language Utilities
Overview
Edit Language Text
BBJabber

Overview
The Barista Application Framework® includes utilities to help application developers
build Java resource bundles (http://en.wikipedia.org/wiki/Java_resource_bundle).
These resource bundles facilitate internationalization by translating such things as
labels, prompts, message text, and headings to the correct language for a given locale.
The two utilities described use the BBTranslator custom object to create the resource
bundle .properties files containing key/value pairs for the base (default) language.

Barista uses the completed .properties files – that is, files in which the additional
language translations have been added – to create the .arc and .def files from which
forms are run. In addition, Barista performs run-time translation of other "text label"
data, such as messages, report headings or other literal text in back-end code.

The prefix, location and active locales for a given set of properties files is defined
in the Barista Applications table. The image below indicates that the ../apps/aon/
prop/ directory will contain at least three files: addon.properties (base/default),
addon_en.properties, and addon_es.properties.

http://en.wikipedia.org/wiki/Java_resource_bundle
http://documentation.basis.com/BASISHelp/WebHelp/bbutil/bbtranslator.htm

Edit Language Text
The Edit Language Text utility is accessible from the following forms, either via the
Barista Edit menu, or by pressing F6. You should run the utility to check for missing
and/or changed translations whenever you create or change any of these translated
fields:

Form Translated Fields
Element Types Window Label, Column Header, User Prompt
Element List Definitions Description
System Messages Message Title, Display Options, Message Text
Form Designer Window Title, Additional Options, Tab Definitions,

Group Headings, User Prompts, Control Labels,
Column Headers

The Edit Language Text form shows all of the keys that are or should be in
the .properties file. Keys that are already in the properties file, and for which the base
language translation is up to date, display in normal font. Missing keys are also in
normal font, but are automatically checked to be added to the .properties file when you
click the Save button. Keys for which a conflict exists in the base translation are bolded.

The screenshot below illustrates all of these states. Most of the lines show both the
base language and translated text for the given Property Key/Description. Two of
the lines are bolded, meaning that the base translation in the .properties file does not
match the setting in the Form Designer or on the Element Type. One line has the

Save checkbox selected, indicating that this key and base translation aren't found in
the .properties file at all.

By analyzing the Form Designer for this form, we can see that the User Prompt for the
HOLD_FLAG field has changed to "Hold Invoice for Manual Release?" and the Control
Label for BATCH_NO now shows as "Batch No." The Column Header for this field was
likely removed/blanked out before, and has now been added.

In the case of the changed fields, select the appropriate cell, and type or copy/paste
the new base translation either directly in the cell, or into the text area at the bottom of
the form. Note: when translating Barista System Messages, the Message Text must be
edited using the larger text area. Message Text is a multi-line field, and therefore can't
be edited directly in the grid because of the potential for embedded tabs and linefeeds.

As soon as any changes are made in these columns, Barista automatically checks the
box in the Save column.

You needn't take any action on the non-bolded lines; as long as the Save checkbox is
selected, these property keys will be added with a base translation when you click the
Save button.

To facilitate translation to other languages (a process which is typically done using
text comparison tools), it's best to duplicate new or changed entries in each additional
language column in the original/base language. This way, the comparison tool can
easily locate identical entries as candidates for translation.

BBJabber
In order for literal text in back-end code (reports, publics, updates, etc.) to be translated
at run-time, you need to use the getTranslation() method of the BBTranslator
object in your code (see http://www.basis.com/onlinedocs/documentation/flash/
bbutil/bbtranslator.htm for more information). Barista automatically instantiates a
BBTranslator object called Translate! when it begins a new process, so when running

http://www.basis.com/onlinedocs/documentation/flash/bbutil/bbtranslator.htm
http://www.basis.com/onlinedocs/documentation/flash/bbutil/bbtranslator.htm

back-end code, the Translate! object is available to you, i.e., you needn't create your
own instance of the object.
There are several ways to invoke the getTranslation() method (see http://
www.basis.com/onlinedocs/documentation/flash/bbutil/bbtranslator_gettranslation.htm
for more detail):

· getTranslation(string key): looks for the specified key, and returns the
translation for the current locale. If a translation doesn't exist for the current
locale, it returns the base translation. If the key isn't present in the .properties file
at all, the key itself is returned.
· getTranslation(string key, string defaultValue): as above, but returns the
defaultValue if the requested translation doesn't exist.
· getTranslation(string key, string defaultValue, boolean addIfNotFound):
as above, but also adds the key and defaultValue to the .properties file if
addIfNotFound = 1.

For example, rather than coding a statement like heading1$="Customer
ID", you can instruct Barista to translate at run time by using the format
heading1$=Translate!.getTranslation("CUSTOMER_ID"), where "CUSTOMER_ID"
is the .properties file key. This is fine if you have an up-to-date .properties file.
If you aren't sure whether or not the "CUSTOMER_ID" key exists, you can code
heading1$=Translate!.getTranslation("CUSTOMER_ID","Customer ID")instead.
Finally, if you want to not only translate, but also build the .properties file at run time,
you can code heading1$=Translate!.getTranslation("CUSTOMER_ID","Customer
ID",1) so the default value will get added to the .properties file if need-be.

The BBJabber utility provides a batch-mode alternative, so you can process all desired
text in one or more back-end programs at once, rather than using the getTranslation()
method as you code. Using BBJabber is advantageous in that it not only performs a
find/replace of specified text in the back-end program source, but also adds the keys
and base translations to the .properties file.

If you always use the getTranslation() method when creating new code, your program
will be internationalized even if you don't remember to run it through BBJabber.
However, using BBJabber is highly recommended, as it provides more control over
the quality/consistency of the .properties files, and can find literals that you may have
missed while coding.

Launch BBJabber from Barista Utilities ➔ Miscellaneous ➔ Launch Custom Program:

http://www.basis.com/onlinedocs/documentation/flash/bbutil/bbtranslator_gettranslation.htm
http://www.basis.com/onlinedocs/documentation/flash/bbutil/bbtranslator_gettranslation.htm

BBJabber requires several pieces of information to get started. You can streamline
initialization by including a carat-delimited string to your application .syn file as shown
here for AddonSoftware®:

STBL=SET +BBJABBER_DFLTS=addon^c:../apps/aon/prop^Translate!^c:../apps/aon/

ap/src^1^AON_^1

This STBL sets the following run-time information:

· Resource Bundle Name is the name of the various .properties files
that comprise the language bundle. In this example, we will have files
named addon.properties (the base file containing the default language),
addon_en.properties (English), addon_es.properties (Spanish), etc.
· Resource Bundle Directory is the path where the Resource Bundle files
are stored.
· Translator Object Name is the object name to use in the source files.
Barista applications use Translate! by default, but if you wish to instantiate your
own object, you can supply a different name.
· Source Directory is the directory containing the source files you want to
process.
· Source Files is the list of files found in the Source Directory. This list is
populated by BBJabber once the Source Directory is validated.
· Language of Origin is set by BBJabber based on the current locale.
· Choose affected language(s) is set by BBJabber.
· Capitalize Keys instructs BBJabber to convert all keys to upper case
(indicated by the first "1" in the STBL above).
· Key Prefix allows you to assign a standard prefix on all keys, and is
recommended for consistency and to avoid possible duplicates.
· Auto-Apply means that BBJabber applies the capitalization and prefixes to
all keys automatically, rather than on a case-by-case basis by using the Apply
button (indicated by the final "1" in the STBL above).

There are some other options you can set manually, if desired. These options have a
more global impact, so should only be used by BBJabber experts:

All, if checked, selects all of the source files and the first file is loaded. In conjunction
with the Auto Commit option, one can work through a directory of files very quickly.
Auto-Commit tells BBJabber to save the modified source file back to the Source
Directory without prompting.

In addition, while working with the program text, you can instruct BBJabber to include as
translation candidates strings that are capitalized, or contain whitespace, punctuation,
or underscores. These options are turned off by default.

Below is a BBJabber example using the AddonSoftware application. We have selected
the source directory that contains back-end programs for the Accounts Payable
module. When we double-click the apr_comments.aon item in the Source Files list,
BBJabber reads through that file and presents a list of all string literals that meet our
criteria. In this case, we have opted not to show literals that are capitalized, and/
or contain whitespace, punctuation or underscores. You can experiment with these
settings to see which ones result in the most accurate list for your purposes.

BBJabber sets the Convert box by default. We can uncheck any strings that should not
be translated. You can use either the mouse or spacebar to check/uncheck the box in
each row. You may want to have the source file open in an editor to confirm whether or
not BBJabber should convert a given string to use the getTranslation() method.

In our sample program, we don't want to alter the date format strings, or the two file
names ("apm-01" and "apm-09"), but the other literals should be changed. Once we
toggle the Convert checkboxes as needed, we can save our source file by pressing the
Commit button. Alternatively, if we simply select another item from the Source Files list,
we'll be prompted to save the previous file.

Let's review what BBJabber has done with our apr_comments.aon file. Below
are "before" and "after" excerpts of the program code:

Before:
rem --- Column Headings

dim columns$[3,10]

 columns = 3
 columns$[0,0]="Vendor",columns$[0,1]="C",columns$[0,2]="10"
 columns$[1,0]="Name",columns$[1,1]="C",columns$[1,2]="50"
 columns$[2,0]="Contact",columns$[2,1]="C",columns$[2,2]="20"
 columns$[3,0]="Telephone",columns$[3,1]="C",columns$[3,2]="10"

After:
rem --- Column Headings

dim columns$[3,10]

 columns = 3
 columns$[0,0]=Translate!.getTranslation("AON_VENDOR"),columns$[0,1]
="C",columns$[0,2]="10"

 columns$[1,0]=Translate!.getTranslation("AON_NAME"),columns$[1,1]
="C",columns$[1,2]="50"

 columns$[2,0]=Translate!.getTranslation("AON_CONTACT"),columns$[2,1]
="C",columns$[2,2]="20"

 columns$[3,0]=Translate!.getTranslation("AON_TELEPHONE"),columns$[3,1]
="C",columns$[3,2]="10"

In addition, BBJabber has updated the addon.properties file with the following key/value
entries. Note in the last translation that any spaces in keys are replaced with underscore
characters, and the backslash ("\") in the translation value indicates that the space
should be preserved:

AON_(CONTINUED)=(Continued)

AON_CONTACT=Contact

AON_NAME=Name

AON_NO=No

AON_TELEPHONE=Telephone

AON_VENDOR=Vendor

AON__VENDOR(S)_LISTED=\ Vendor(s) Listed

Now that we have the keys and base translations we need in the .properties file, we can
use a tool such as the BASIS IDE to add additional language translations required for
internationalization.

