
CodePort: Preserving Existing Programs

Revised 3 January 2011

Disclaimer
The procedures described in this document have been designed and implemented by AddonSoftware
and have received limited testing by the AddonSoftware staff. The CodePort utility is constantly being
upgraded to address new issues as they are encountered, so some elements of this document may be
obsolete. Please forward any issues and/or suggestions to AddonSoftware.

Introduction to CodePort
The CodePort utility is intended to provide a tool for migrating existing AddonSoftware Version 6.x or 7.x
to the standards used in the Barista version. CodePort expects to use a compiled PRO/5 program as
input and further expects that the program generally complies with the AddonSoftware standards and
conventions for program code.

Revised 3 January 2011

Running the CodePort Utility
Run the CodePort Utility from the AddonSoftware Administration -> Utilities menu.

You’ll need to know where your PRO/5 tokenized Addon Version 6 or 7 code resides. CodePort uses the
compiled code as input, and creates an ASCII program source file containing the converted code.

CodePort performs several tasks to modernize the code and convert it to Barista standards. You
can learn more about the conversion process and program flow in the CodePort Utility Program Flow
document. In this document we’ll convert a program and illustrate typical post-conversion edits.

Revised 3 January 2011

The CodePort Option Entry form appears in Figure 1 below. Because CodePort uses a Barista Option
Entry form, you can double-click the LAST_PROCESS or other saved-selection options to re-use
previous selection criteria.

● Version: Select AddonSoftware 6.x or 7.x; this selection controls what sorts of text replacements
take place in the selected program file(s).

● Legacy Program Directory: browse to the directory containing the tokenized program file(s) to
convert.

● Destination Directory: browse to the directory where new program source files should be saved.
You can create a new directory from the directory chooser, if the destination directory doesn’t
already exist.

● New Src File Extension: this defaults to “aon.” Use a different three-character extension if
desired.

● Number of Input Args: this entry determines the number of placeholders that will be created
in the new source file for gathering any user input. Use this if you are converting something
such as a report -- you will typically not convert the “pick screen” program, but only the overlay.
The legacy user selections will be replaced by a Barista Option Entry form, which will run the
program overlay. Once the Option Entry form is created, you can come back to thse placeholder
statements and fill in the actual field names from the form.

Revised 3 January 2011

● Overwrite without Prompting: As a courtesy, CodePort will always warn you before it begins if the
Destination Directory is not empty. This checkbox provides a further override so you replace files
that already exist without interactive prompting. If not selected, CodePort will ask if you want to
overwrite each time it encounters a file that already exists in the Destination Directory.

● Source Programs: select one or more files for conversion from the Source Programs grid. Use the
Refresh Source Pgms button to reload the Source Programs directory if you want to uncheck all
selected programs, if you have changed the Version and/or Legacy Program Directory, or if you
have automatically set run-time options using the Saved Selections grid.

Press the Run Process button (or F5) to begin the conversion process. Each program typically completes
in a few seconds. As it runs, the log file (see the <install>/aon/util/codeport/logs/ directory) is updated,
and the progress meter also displays conversion status. When the conversion is finished, the progress
meter will display “process completed” and wait for you to press the OK button to dismiss CodePort.

Revised 3 January 2011

Post-Conversion Changes
The CodePort utility can automate several of the required steps toward producing code that will run in
Barista. Other post-conversion modifications are discussed below. Make these modifications to the code
using a text edit. Note that CodePort will help by listing any errors or exceptions encountered during the
conversion as comments at the top of the program. It will also show any IOLIST’s removed as part of the
conversion.

In our example, CodePort reports two errors stemming from a #include of the standard input routine.
Since our input will be coming from a separate Selection Form, the standard input routine code can be
removed from this version. CodePort also tells us that it has replaced an IOLIST used for the Customer
Master file. In addition we see a note identifying a channel reference to the AR Parameter file.

Always remember to check the initial lines of code to be sure that any BEGIN (or similar) statements are
removed. CodePort also replaces all program code from line 8700 through the “end” statement of the
program and replaces those sections (functions, error routine, program end).

Any custom code after the “end” verb (i.e., in statements 10000 and beyond) is saved in a separate
vector during processing and placed back at the end of the new source file. Note that CodePort does not
attempt any modifications or replacements on custom code except removing line number references (via
the “_label” utility) and converting to lower case.

Revised 3 January 2011

CodePort will automatically insert code to open files and retrieve the record templates for any IOLIST’s
encountered during the conversion.

CodePort has already supplied the code to open the Customer Master and AR Parameter files, and to
dimension the associated string templates.

The next piece of code has been place by CodePort in anticipation of fields coming from the Selection
Form or other initialization program. Leave this code as is for now:

The rest of the post-conversion work will be the most labor-intensive, and involves five main classes of
modification. Much of this will quickly become routine, but there will no doubt be times when you’ll need to
refer back to the original Version 6 or 7 code and file layouts.

● Identify variables that correspond to data supplied by the Selection Form or other initialization
program, and note them as REM’s in the section of code depicted above.

● Resolve IOLIST elements to their templated names. While CodePort will define any used
templates and replace the related I/O statements, it does not replace IOLIST variable references
with their templated names. This must be performed manually and is generally the most time-
consuming part of the conversion. While not strictly required (you could for example move the
templated record into the old IOLIST variables) it is strongly recommended. Once performed, the
need to modify programs when new fields are added or field lengths change is either eliminated
or greatly reduced.

● Eliminate GOTO statements, wherever possible, by using while/wend or other structured syntax.
● Remove/replace the statement number labels placed in the code by CodePort. While purely

optional, it’s recommended that you replace the arbitrary and non-intuitive labels generated by
the utility with more meaningful names. Taking the time (and it’s not much time) to perform this
simple search and replace will make things easier for you in the future.

● Remove other unneeded code (such as the standard input routine in this example).

Incoming variables:
Revised 3 January 2011

First, we’ll look at the initialization section of the program to see what variables we’re setting, and which
ones should be coming from the Select Form:

We can fairly quickly ascertain that n1$, n3$, mo$, p[2], p7$, p8$ and p9$ are already known when this
program executes, as well as the device channel file_dev. Create a REM in the “assign form input values
to local variables” section of code noting these variables.

IOLISTS
Now let’s look at the main section of the code, with an eye toward replacing IOLIST variables with their
string template counterparts:

Revised 3 January 2011

We read the Customer Master file (arm-01), not using the old IOLIST, but the string template variable we
dimensioned earlier. By consulting both the legacy and Barista table layouts, we can change the code to
use string template (<table>.<field>) notation:

GOTO’s/Labels

Revised 3 January 2011

Now we’ll tackle the GOTO’s and CodePort’s line labels. We’ll replace the main loop with a while/wend
structure that uses symbolic labels (break), eliminating all but one goto. For that label, we’ll replace the
non-intuitive l1100 with next_arm01a:

Finally, we’ll scan through the code and remove anything we know is no longer needed, in this case the
standard input routine.

Sort Files
In the Barista version of Addon, most sort files have been replaced by secondary indices on the source
file. If the code that you’re porting uses an existing sort file record, check the Barista file layouts (Barista
Development -> Table Layout Inquiry) to see if the sort record has been replaced.

Improved Program Structure
Moving to BBj introduces many new programming structures that aren't available in PRO/5. Many of
them can be incredibly useful. Structures such as if/endif, while/wend and switch/case can improve the
readability and flow of code, decreasing or eliminating the need for goto statements. In addition, symbolic
labels such as next, break, and continue are highly recommended wherever possible. See the BASIS
help docs for more on these structures.

Revised 3 January 2011

Tidying up…
In addition to the newer coding structures, using indentation, white-space, comments, and breaking
long lines with the colon (“:”) continuation character will all help to create source that is easy for other
developers or support reps to read and understand. If you aren’t familiar with using the colon for long
lines, see the BASIS help docs.

Last but not least, don’t forget to remove any error or exception comments at the top of the program. You
might also consider removing any unreferenced functions.

Revised 3 January 2011

