
How to: Create a Barista System Message for Addon

AddonSoftware® makes use of the Barista System Messages table to store various messages
used throughout the application. This document describes the process of creating a new
System Message record, creating an .xml version of the record, and committing that .xml to the
SVN repository for inclusion in the standard product.

Note: While this document addresses System Messages, the same process (creating
an .xml version of the record and committing to the repository) applies to the other Barista
Administrative tables (Input/Display Masks, Sequence Numbers, etc.).

Development Environment Global
Before adding or changing administrative records that are part of the standard Addon product,
you need to set a global that will cause Barista to make an .xml version of each saved record.
You can either alter the +BARISTA_DEV_MODE global directly in your barista.cfg, or add it to
your addon.syn file so that it will be “pushed” into your barista.cfg with each synchronization
pass. The default for this global is “YES.” In this mode, you can add and/or alter Barista
Administrative records without being prompted for an .xml save location. Set the value of the
stbl to “NO” if you want Barista to prompt you for a save location for any administrative records.

Figure 1: Setting +BARISTA_DEV_MODE

Launching System Messages
Given the above setting, when you launch a Barista Administrative form, you’ll be presented
first with a grid showing the currently mounted directories. Check only the directory pathname
corresponding to your Addon SVN workarea:

Figure 2: Mounted Directory Selection

Once you click OK, you’ll be taken into the desired form -- in this case, System Messages. In
this example, we’ll add a basic warning message to which the user can reply Yes or No. The
application code invokes the message by calling a Barista public, then takes action based on
the return code.

Figure 3: Barista System Messages form

● Message ID: Create an intuitive message ID. This ID is passed to the Barista messaging
public.

● Message Title: Use AddonSoftware.
● Message Type:

○ OK
○ OK/Cancel
○ Abort/Retry/Ignore
○ Yes/No/Cancel
○ Yes/No
○ Retry/Cancel
○ Custom: Allows you to supply your own button text

● Message Icon: Select the appropriate icon for the message.
● Default Button: Defines which button should be highlighted/selected as the default when

Barista displays the message.
● Display Options: For use with the Custom Message Type; supply the desired button text

for each button, separated by semicolons.
● Message Return Codes: Supply the return codes corresponding to the buttons on the

form.
● App Company and Product ID: Select the BASIS Company ID and appropriate Product

ID. If the message will be used in multiple modules, use “AD.”
● Message Text: Supply the text to appear in the message body. Note

that tokens such as %1 are supported. The text for the token is supplied
by the application. If using tokens, the application program should use
Translate!.getTranslation(“<KEY>”,”<value>”) syntax rather than hard-coding the token
literals. This allows the entire message -- including the tokens -- to be internationialized.

Add/Commit the .xml to the repository
When you save the message, Barista will not only write it to the System Messages table, but
will also (because of the +BARISTA_DEV_MODE setting) create an .xml version of the record
in the <workarea>/aon/data/sync/ directory (Figure 4). You must add and commit this file to
the SVN repository so that the new message is part of the standard product, and is sync’d into
Barista when Addon is built.

Figure 4: xml version of new System Message record in data/sync/ directory

Update the properties files
Since Barista/Addon is designed to run in different languages, you’ll also want to make sure
to update the properties files for the new System Message so it can be translated. From the
System Messages form, call up the Locale Translations form by pressing F6 or selecting Edit
Language Text from the Edit menu.

Copy the values from the base language cells into the corresponding cells for the other
language(s). Note: Message Text is a multi-line edit control in the System Message form, so
can’t be edited directly in the grid cells because of the potential for embedded tabs and
linefeeds. To copy the base language Message Text to the other language(s), select the grid
cell for the base language, then copy the text from the larger text area below the grid. Select the
corresponding cell for the other language(s) and paste into the larger text area.

For more information about the Edit Language Text and BBjabber utilites, see http://
links.basis.com/ajtyz.

Figure 5: Use the Locale Translations form to update the properties files

Barista updates the *.properties files in the aon/data/prop/ directory. As always, run a diff on
the changed files to make sure you only see the expected modifications, and then commit them
back to the repository.

Figure 6: Modified properties files

