
BASIS International Offers a Choice of Databases
By Nico Spence and Jeff Ash

ASIS provides a proven, robust, reliable, and scalable filesystem for the most
demanding business applications. However, today's organizations use many
different databases, requiring application developers to write database-

independent applications. Furthermore, many application developers are considering
the option of connecting to third-party databases to handle issues, such as data
duplication, integration to other disparate systems, and to extend the functionality of
their existing applications. BASIS's TechCon2003 demonstrated BASIS programs
interacting with data from various back-end databases such as Oracle®, SQL Server®,
and Access®.

BASIS provides the SQL language syntax and ODBC/JDBC for PRO/5®, Visual PRO/5®
and BBj® to support database independence. With its Java interoperability, BBj
provides a new way to achieve application database-independence. The BBj Filesystem
Plugin gives the developer the option to create database independence with minimal
code changes to existing applications. This article discusses these two alternative ways
to make an application database-independent and what performance overhead, if any,
is associated with such a change.

The first database alternative involves syntax changes to a BASIS program,
incorporating SQL into an existing application. This is illustrated in the syntax example
below:

Previous Syntax:

 DIM SALESREP$:"EMPLOYEE_ID:C(3*=10),NAME:C(30*=10),ADDRESS:C(30*=10),"+
 :
"ADDRESS2:C(30*=10),CITY:C(20*=10),STATE:C(2*=10),ZIP:C(10*=10)"+
 : ",PHONE:(15*=10),COMM_TYPE:C(1*=10)"
 SALESREPCHAN = UNT
 OPEN (SALESREPCHAN) "EMPLOYEE"
 READ RECORD (SALESREPCHAN) SALESREP$

SQL Syntax:

 SALESREPCHAN = SQLUNT
 SQLOPEN (SALESREPCHAN) "EMPLOYEE"

 SQLPREP (SALESREPCHAN) "SELECT employee_id,name FROM employee
ORDER BY employee_id"
 SQLEXEC (SALESREPCHAN)

 DIM SALESREP$:SQLTMPL (SALESREPCHAN)

 SALESREP$ = SQLFETCH (SALESREPCHAN)

The back-end database could be a BASIS Filesystem or a third party relational
database, such as Oracle, SQL Server, or MySQL. The BASIS program uses
ODBC/JDBC connectivity to access the database.

http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v7n2/index.html
http://www.basis.com/advantage/mag-v7n2/open.html
http://www.basis.com/advantage/mag-v7n2/index.html
http://www.basis.com/advantage/mag-v7n2/manager.html

Implementing this solution involves learning the new SQL syntax, normalizing the
underlying database, and making code changes in the application software. After
implementing this solution, the application becomes truly database-independent, giving
developers and end users a choice of ODBC/JDBC-enabled databases.

The second database alternative, using the Filesystem Plugin, requires almost no code
change to the existing application. The only change is to the OPEN verb, which makes
this option a very simple retrofit to old code. Developers can normalize data structures
without changing the existing application. The Filesystem Plugin is a white-box
implementation, and BASIS provides the ability to re-route standard filesystem
operations, such as READ RECORD to external Java code. This means that an
experienced Java programmer must code the equivalent SQL syntax to emulate the
BASIS syntax for filesystem operations.

The following example demonstrates this process using the Chile Company Database:

1. Insert a new entry in the config.bbx for the file type:

 ALIAS J1CUST chileco.plugin.CustomerOpenPlugin "jdbc:odbc:ChileCo"

2. Change the existing applications OPEN statement to point at the plugin:

 OPEN (customerChan) "J1CUST"

3. This executes the application programmer's customized white box Java code,
which is equivalent to the OPEN verb:

 ...
 try
 (
 m_connection = DriverManager.getConnection(P_url);
)
 catch (SQLException sql)
 (
 throw new FilesystemException(
 FilesystemException.NOF,
 "Unable to connect to database: " + sql.getMessage());
)
 ...

4. Thereafter, the applications filesystem logic is re-routed to execute the applicable
Java white-box code:

 ...
 private static final String BASE_SELECT =
 "SELECT c.cust_num, c.first_name, c.last_name, c.company, " +
 "c.address1, c.address2, c.zip_code, z.city, z.state, c.country, " +
 "c.phone1 FROM customer c, zip z WHERE c.zip_code = z.zip_code ";
 ...

In addition, the developer can rewrite the plugin to manage more than one "file." For
example, rewriting the plugin above to handle the CUSTOMER and EMPLOYEE
information makes the setup of the application much cleaner because there are fewer
plugins to manage. When a plug-in manages more than one "file," it relies on
information from the MODE= portion of the OPEN call. The example above would
change to:

OPEN(customerChan, mode="FILE=CUSTOMER")"J1CUST"

Or

OPEN(customerChan, mode="FILE=EMPLOYEE")"J1CUST"

Figure 1. Performance comparison results.

Figure 2. Visual BASIC time performance test.

The plugin receives a java.util.Map of name/value pairs passed in the MODE=
string, and then the plugin determines how to use the information. The list of
name/value pairs has no limit.

The Q2-3 Advantage CD includes this example. While this example does not attempt
to show the normalization process without changing the existing application, it does
demonstrate that the BASIS application code has a different logical view of the
customer data than the relational database. The plugin has combined two relational
database tables using a common field to present the logical view that the application
expects.

Performance Issues
The enclosed CD contains performance comparisons of the data access options
discussed in this article. The CD also contains a number of performance tests. Figure
1 and Figure 2 illustrate results of these performance tests, carried out on an internal
BASIS notebook, with 10,000 iterations per method.

As one would expect, the native BASIS Filesystem delivers the fastest performance.
The second option, "Filesystem Plugin - NO Operations" demonstrates that the

http://www.basis.com/advantage/mag-v7n2/choice_fig1.html
http://www.basis.com/advantage/mag-v7n2/choice_fig2.html

http://www.basis.com/advantage/mag-v7n2/choice.html[8/15/2011 5:11:31 PM]

Filesystem Plugin itself does not add any significant overhead. The comparison of the
white-box Java Code performance to other data access methods demonstrates the
insignificant overhead of using the Filesystem Plugin. BBj SQL engine access is
comparable to the BBj Filesystem Plugin. In all cases, file access performance is mainly
dependent on database design and implementation.

In conclusion, one can continue to use the BASIS Filesystem for the most efficient data
processing. Alternatively, developers can implement SQL syntax in the BASIS
application and access the BASIS Filesystem or any third-party database with
ODBC/JDBC access. Finally, with hardly any change to existing BASIS programs, one
may implement the BBj Filesystem Plugin and write Java code to implement access to
third-party databases.

Click HERE for the "BASIS International Offers a Choice of Databases" source code.

With BASIS - the Choice of Database is Yours!

http://www.basis.com/advantage/mag-v7n2/manager.html
http://www.basis.com/advantage/mag-v7n2/index.html
http://www.basis.com/advantage/mag-v7n2/open.html
http://public.basis.com/choice.zip

	basis.com
	BASIS International, Ltd. - BASIS International Offers a Choice of Databases

