
www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9

Using an SSCP at the Command Line
Beginning in BBj 9.0, the command line option -CPclasspathName specifies which
SSCP to use when starting a BBj session. For example, to run the program ATest.
bbj using the SSCP whose name is test, use the command line:

 bbj –CPtest Atest.bbj

Using an SSCP with BBjAPI::newBBjSession()
Another option to using an SSCP within the BBjAPI is with code similar to the example
in Figure 3.

Click the ‘add’ icon in the ‘Classpath Names’ pane and then add the desired jar files in the
‘Classpath Entries’ pane.

Creating an SSCP Using BBjAPI
Alternatively, a developer can create an SSCP programmatically using code similar to
Figure 2.

Bj® 9.0 introduced session-
specific classpath (SSCP) to
allow developers to set the Java
classpath for BBjSessions on

a per-session basis. This capability is
especially useful during the development
of custom Java code or when the developer
wishes to test a third party Java library
without restarting BBj Services. This article
explores how SSCP positively impacts the
development cycle, and more!

Background
Historically, the classpath for BBj
Services was configured using the
Enterprise Manager. That classpath
has acted as the classpath for every
BBjProcess within the BBServices
process and could not be changed
without restarting BBj Services. While
BBj Services was running, the classpath
could be modified through the Enterprise
Manager but the changes would not take
effect until BBj Services was restarted.
This has meant that when users wrote a
BBj program that used embedded Java
that was not found in the classpath of the
running BBj Services then they would
need to add a jar file to the BBj Services
classpath and restart BBj Services in
order to test their program. Similarly, if
custom Java code was modified and the
jar file containing that code was updated,
the user’s program would not see those
changes until BBj Services was restarted.

Overview
An SSCP is a classpath that can be used
by a BBjSession as an alternative to
using the BBj Services classpath. More
precisely, an SSCP is a classpath that
will be prepended to the BBjSessions
classpath to define the classpath for
a particular BBjSession. An SSCP is
identified using a developer-defined
name and can be defined using the
Enterprise Manager or can be defined
using the BBjAPI. Once an SSCP is

Session-specific Classpaths –
Use Jars Dynamically

Language/Interpreter

 B

By David Wallwork
Senior Software
Architect

defined, a BBjProcess can be started with that SSCP by using command line parameters
or by using the BBjAPI method BBjCommandLineObject.setClasspathName(). All of this
can be done without restarting BBj Services.

Creating an SSCP Using Enterprise Manager
To create a new SSCP, enter the information on the Classpath tab of the Server
Information section within Enterprise Manager as shown in Figure 1.

Figure 1. Create a new SSCP

Figure 2. Create an SSCP programmatically

1

> >

http://www.basis.com/announcements/mc-2009-002-bbj-barista90.pdf
http://www.basis.com/announcements/mc-2009-002-bbj-barista90.pdf
http://www.basis.com/onlinedocs/documentation/whcsh_home.htm#id=302
http://www.basis.com/onlinedocs/documentation/whcsh_home.htm#id=302
http://www.basis.com/onlinedocs/documentation/whcsh_home.htm#id=21613

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9 www.basis.com

Modifying an Existing SSCP
Once a BBj session starts with a particular SSCP, changes made to that SSCP will not
affect the running BBj session. The code sample in Figure 4 illustrates this by defining an
SSCP named test and then starting a BBj session. After starting the BBj session, the SSCP
changes, but the BBj session that has already started will not recognize the changes.

Language/Interpreter

Figure 3. Using an SSCP within BBjAPI

Figure 4. Code sample demonstrating how a running BBj session will not see the changes to its SSCP

2

named testA and testB, then each SSCP
will load a different class object for Foobar.
This means that the code running within
a BBj session with testA SSCP will have
a different class object for Foobar than
the code running in a BBj session with
testB SSCP. Those BBj sessions will see
a different value for any static variable that
is in Foobar.

Using an environment to reload the testA
classpath can cause a similar situation.
A BBj session that was started prior
to the call to reloadClasspath(“testA”)
and has the command line parameter
-CPtestA will have a different SSCP than
a BBj session that is started after the
call to reloadClasspath(“testA”) with the
command line parameter -CPtestA. Those
two sessions will see different values for
any static variable that is in Foobar.

SSCP and BASIS Jars
If a class found in a jar on an SSCP has
the same fully qualified classname as a
class that is found in one of the BASIS
jars, then the jar that is on the SSCP is
considered to conflict with the BASIS jar.
This conflict can cause unpredictable
behavior and may result in failure in the
user's code. When BBj discovers such
a conflict, it generates a nag message
alerting the user of the problem (unless
the user is running with a DVK license).
While the developer can choose to handle
this in any of the following ways, the
preferred solution is the first:

 1. Rename the classes in the user's jar 	
 (the one on SSCP) using a utility such 	
 as http://code.google.com/p/jarjar/.

 2. Ignore both the conflict and the nag 	
 message.

 3. Ignore the conflict and suppress
 the nag message by setting the 	
 system property com.basis.bbj.	
 suppressJarConflictNag=true.

Summary
As the use of embedded Java becomes
more pervasive, there is an increased
need to allow separate BBj sessions to
have individual classpaths so they can
access libraries different from those
found in the classpath of BBj Services.
SSCP provides this capability and can be
configured using the BBjAPI or by using
Enterprise Manager. Finally, SSCP gives
users the flexibility they need during both
development and deployment.

Modifying Jar Files and Reloading an SSCP
If an SSCP named test contains a jar file named foo.jar, and a developer then
modifies foo.jar on disk, several factors will determine whether a BBjSession using
the test SSCP will recognize the changes in foo.jar (whether files are loaded from
the old foo.jar or the newly modified foo.jar).

These factors include:

 • Whether a program calls BBjEnvironment::reloadClasspath("test")

 • How the ‘Recheck Session Classpath’ performance setting in Enterprise Manager 	
 was set

 • If the BBj session was started before or after the change was made

If any program invokes the method BBjEnvironment::reloadClasspath("test"),
then all subsequent BBj processes that use the "test" SSCP will load classes from the
modified jar. It is best to call this method after modifying any jar file that is on any SSCP.

If developers set the Recheck Session Classpath to “development,” then BBj checks
the date of each file on the SSCP every time they start a new BBj process with that
SSCP. This means that any new BBj process that use the "test" SSCP will load
classes from the modified jar.

It is worth noting that some operating systems, such as Microsoft Windows, do not
allow users to modify a file that is in-use. Therefore, when making modifications to
custom classes, developers may want to add versioning information to the resultant
JAR file name, allowing new BBj sessions to utilize the new JAR immediately.

SSCP and Static Variables
Java shares a static variable across all instances of a given class. In most cases there
is only one class for any given class name within the entire JVM so Java shares a
static variable across the entire JVM. When using SSCP, this is not always the case.
If Foobar.class is found in foo.jar, and foo.jar appears in two different SSCPs

http://www.basis.com/onlinedocs/documentation/whcsh_home.htm#id=21613
http://code.google.com/p/jarjar/

